Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Bioinformatics ; 38(2): 520-526, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34601553

RESUMEN

MOTIVATION: Multiplexed immunofluorescence bioimaging of single-cells and their spatial organization in tissue holds great promise to the development of future precision diagnostics and therapeutics. Current multiplexing pipelines typically involve multiple rounds of immunofluorescence staining across multiple tissue slides. This introduces experimental batch effects that can hide underlying biological signal. It is important to have robust algorithms that can correct for the batch effects while not introducing biases into the data. Performance of data normalization methods can vary among different assay pipelines. To evaluate differences, it is critical to have a ground truth dataset that is representative of the assay. RESULTS: A new immunoFLuorescence Image NOrmalization method is presented and evaluated against alternative methods and workflows. Multiround immunofluorescence staining of the same tissue with the nuclear dye DAPI was used to represent virtual slides and a ground truth. DAPI was restained on a given tissue slide producing multiple images of the same underlying structure but undergoing multiple representative tissue handling steps. This ground truth dataset was used to evaluate and compare multiple normalization methods including median, quantile, smooth quantile, median ratio normalization and trimmed mean of the M-values. These methods were applied in both an unbiased grid object and segmented cell object workflow to 24 multiplexed biomarkers. An upper quartile normalization of grid objects in log space was found to obtain almost equivalent performance to directly normalizing segmented cell objects by the middle quantile. The developed grid-based technique was then applied with on-slide controls for evaluation. Using five or fewer controls per slide can introduce biases into the data. Ten or more on-slide controls were able to robustly correct for batch effects. AVAILABILITY AND IMPLEMENTATION: The data underlying this article along with the FLINO R-scripts used to perform the evaluation of image normalizations methods and workflows can be downloaded from https://github.com/GE-Bio/FLINO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Núcleo Celular , Sesgo , Técnica del Anticuerpo Fluorescente
2.
Mod Pathol ; 35(4): 564-576, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34732839

RESUMEN

Colorectal cancer (CRC) has one of the highest cancer incidences and mortality rates. In stage III, postoperative chemotherapy benefits <20% of patients, while more than 50% will develop distant metastases. Biomarkers for identification of patients at increased risk of disease recurrence following adjuvant chemotherapy are currently lacking. In this study, we assessed immune signatures in the tumor and tumor microenvironment (TME) using an in situ multiplexed immunofluorescence imaging and single-cell analysis technology (Cell DIVETM) and evaluated their correlations with patient outcomes. Tissue microarrays (TMAs) with up to three 1 mm diameter cores per patient were prepared from 117 stage III CRC patients treated with adjuvant fluoropyrimidine/oxaliplatin (FOLFOX) chemotherapy. Single sections underwent multiplexed immunofluorescence staining for immune cell markers (CD45, CD3, CD4, CD8, FOXP3, PD1) and tumor/cell segmentation markers (DAPI, pan-cytokeratin, AE1, NaKATPase, and S6). We used annotations and a probabilistic classification algorithm to build statistical models of immune cell types. Images were also qualitatively assessed independently by a Pathologist as 'high', 'moderate' or 'low', for stromal and total immune cell content. Excellent agreement was found between manual assessment and total automated scores (p < 0.0001). Moreover, compared to single markers, a multi-marker classification of regulatory T cells (Tregs: CD3+/CD4+FOXP3+/PD1-) was significantly associated with disease-free survival (DFS) and overall survival (OS) (p = 0.049 and 0.032) of FOLFOX-treated patients. Our results also showed that PD1- Tregs rather than PD1+ Tregs were associated with improved survival. These findings were supported by results from an independent FOLFOX-treated cohort of 191 stage III CRC patients, where higher PD1- Tregs were associated with an increase overall survival (p = 0.015) for CD3+/CD4+/FOXP3+/PD1-. Overall, compared to single markers, multi-marker classification provided more accurate quantitation of immune cell types with stronger correlations with outcomes.


Asunto(s)
Neoplasias Colorrectales , Análisis de la Célula Individual , Subgrupos de Linfocitos T , Biomarcadores de Tumor , Quimioterapia Adyuvante , Neoplasias Colorrectales/patología , Humanos , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Pronóstico , Subgrupos de Linfocitos T/citología , Microambiente Tumoral
3.
Brain Stimul ; 16(3): 703-711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37055009

RESUMEN

Focused ultrasound stimulation (FUS) activates mechanosensitive ion channels and is emerging as a method of noninvasive neuromodulation. In preclinical studies, FUS of the spleen (sFUS) activates an anti-inflammatory neural pathway which suppresses acute and chronic inflammation. However, the relevance of sFUS for regulating inflammatory responses in humans is unknown. Here, we used a modified diagnostic ultrasound imaging system to target the spleen of healthy human subjects with 3 min of continuously swept or stationary focused pulsed ultrasound, delivered at three different energy levels within allowable safety exposure limits. Potential anti-inflammatory effects of sFUS were assessed by measuring sFUS-elicited changes in endotoxin-induced tumor necrosis factor (TNF) production in whole blood samples from insonified subjects. We found that stimulation with either continuously swept or focused pulsed ultrasound has an anti-inflammatory effect: sFUS lowers TNF production for >2 h, with TNF returning to baseline by 24 h following sFUS. This response is independent of anatomical target (i.e., spleen hilum or parenchyma) or ultrasound energy level. No clinical, biochemical, or hematological parameters are adversely impacted. This is the first demonstration that sFUS suppresses the normal inflammatory response in humans, with potential implications for noninvasive bioelectronic therapy of inflammatory disorders.


Asunto(s)
Bazo , Terapia por Ultrasonido , Humanos , Bazo/diagnóstico por imagen , Ultrasonografía , Terapia por Ultrasonido/métodos , Vías Nerviosas , Ondas Ultrasónicas
4.
J Pharmacokinet Pharmacodyn ; 39(1): 37-54, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22161221

RESUMEN

We developed a detailed, whole-body physiologically based pharmacokinetic (PBPK) modeling tool for calculating the distribution of pharmaceutical agents in the various tissues and organs of a human or animal as a function of time. Ordinary differential equations (ODEs) represent the circulation of body fluids through organs and tissues at the macroscopic level, and the biological transport mechanisms and biotransformations within cells and their organelles at the molecular scale. Each major organ in the body is modeled as composed of one or more tissues. Tissues are made up of cells and fluid spaces. The model accounts for the circulation of arterial and venous blood as well as lymph. Since its development was fueled by the need to accurately predict the pharmacokinetic properties of imaging agents, BioDMET is more complex than most PBPK models. The anatomical details of the model are important for the imaging simulation endpoints. Model complexity has also been crucial for quickly adapting the tool to different problems without the need to generate a new model for every problem. When simpler models are preferred, the non-critical compartments can be dynamically collapsed to reduce unnecessary complexity. BioDMET has been used for imaging feasibility calculations in oncology, neurology, cardiology, and diabetes. For this purpose, the time concentration data generated by the model is inputted into a physics-based image simulator to establish imageability criteria. These are then used to define agent and physiology property ranges required for successful imaging. BioDMET has lately been adapted to aid the development of antimicrobial therapeutics. Given a range of built-in features and its inherent flexibility to customization, the model can be used to study a variety of pharmacokinetic and pharmacodynamic problems such as the effects of inter-individual differences and disease-states on drug pharmacokinetics and pharmacodynamics, dosing optimization, and inter-species scaling. While developing a tool to aid imaging agent and drug development, we aimed at accelerating the acceptance and broad use of PBPK modeling by providing a free mechanistic PBPK software that is user friendly, easy to adapt to a wide range of problems even by non-programmers, provided with ready-to-use parameterized models and benchmarking data collected from the peer-reviewed literature.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Farmacocinética , Algoritmos , Estructuras Animales/metabolismo , Animales , Transporte Biológico/fisiología , Biotransformación/fisiología , Líquidos Corporales/metabolismo , Cefotaxima/análogos & derivados , Cefotaxima/farmacocinética , Cefalosporinas/farmacocinética , Medios de Contraste/farmacocinética , Bases de Datos Factuales , Células Eucariotas/metabolismo , Cobayas , Haplorrinos , Humanos , Internet , Yohexol/farmacocinética , Ratones , Preparaciones Farmacéuticas/sangre , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Ratas , Reproducibilidad de los Resultados , Programas Informáticos , Distribución Tisular/fisiología , Interfaz Usuario-Computador , Cefpiroma
5.
J Colloid Interface Sci ; 607(Pt 1): 720-728, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34536932

RESUMEN

HYPOTHESIS: Carbon dioxide nanobubbles can increase effective gas-transfer to solution and enhance buffering capacity given the stable suspension in water of CO2 gas within nanobubbles and the existence of larger gas/water interface. EXPERIMENTS: The physico-chemical properties and responses of CO2 nanobubbles were recorded at different generation times (10, 30, 50, and 70 min) and benchmarked against traditional macrobubbles of CO2 for the same amount of delivered gas. Effective concentration of CO2 was evaluated by measuring the buffer capacity (ß). The size distribution of nanobubbles during the experiments was measured by Nanoparticle Track Analysis. FINDINGS: The mass transfer coefficient (KLa) showed a dramatically increase by 11-fold for the same volume of gas delivered when using nanobubbles. The ß values obtained for nanobubbles were 7 times higher than that of traditional bubbles which can lead to significant source of CO2 availability by using the nanobubble method. Nanobubbles, consequently, undergo mass loss at higher pH corresponding to mass transfer process due to concentration gradient at the surrounding nanobubbles. This is the first report of CO2 nanobubbles buffer capacity evaluation.


Asunto(s)
Nanopartículas , Agua , Dióxido de Carbono
6.
Front Immunol ; 13: 892086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784337

RESUMEN

Interfaces between the nervous and immune systems have been shown essential for the coordination and regulation of immune responses. Non-invasive ultrasound stimulation targeted to the spleen has recently been shown capable of activating one such interface, the splenic cholinergic anti-inflammatory pathway (CAP). Over the past decade, CAP and other neuroimmune pathways have been activated using implanted nerve stimulators and tested to prevent cytokine release and inflammation. However, CAP studies have typically been performed in models of severe, systemic (e.g., endotoxemia) or chronic inflammation (e.g., collagen-induced arthritis or DSS-induced colitis). Herein, we examined the effects of activation of the splenic CAP with ultrasound in a model of local bacterial infection by lung instillation of 105 CFU of Streptococcus pneumoniae. We demonstrate a time-dependent effect of CAP activation on the cytokine response assay during infection progression. CAP activation-induced cytokine suppression is absent at intermediate times post-infection (16 hours following inoculation), but present during the early (4 hours) and later phases (48 hours). These results indicate that cytokine inhibition associated with splenic CAP activation is not observed at all timepoints following bacterial infection and highlights the importance of further studying neuroimmune interfaces within the context of different immune system and inflammatory states.


Asunto(s)
Neumonía , Bazo , Antiinflamatorios/farmacología , Citocinas/metabolismo , Humanos , Inflamación/metabolismo , Neumonía/metabolismo , Nervio Vago/fisiología
7.
Cell Death Differ ; 29(4): 806-817, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34754079

RESUMEN

Cancer cells' ability to inhibit apoptosis is key to malignant transformation and limits response to therapy. Here, we performed multiplexed immunofluorescence analysis on tissue microarrays with 373 cores from 168 patients, segmentation of 2.4 million individual cells, and quantification of 18 cell lineage and apoptosis proteins. We identified an enrichment for BCL2 in immune, and BAK, SMAC, and XIAP in cancer cells. Ordinary differential equation-based modeling of apoptosis sensitivity at single-cell resolution was conducted and an atlas of inter- and intra-tumor heterogeneity in apoptosis susceptibility generated. Systems modeling at single-cell resolution identified an enhanced sensitivity of cancer cells to mitochondrial permeabilization and executioner caspase activation compared to immune and stromal cells, but showed significant inter- and intra-tumor heterogeneity.


Asunto(s)
Neoplasias Colorrectales , Proteína Inhibidora de la Apoptosis Ligada a X , Apoptosis/fisiología , Neoplasias Colorrectales/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
8.
Nat Biomed Eng ; 6(6): 683-705, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35361935

RESUMEN

Peripheral neurons that sense glucose relay signals of glucose availability to integrative clusters of neurons in the brain. However, the roles of such signalling pathways in the maintenance of glucose homoeostasis and their contribution to disease are unknown. Here we show that the selective activation of the nerve plexus of the hepatic portal system via peripheral focused ultrasound stimulation (pFUS) improves glucose homoeostasis in mice and rats with insulin-resistant diabetes and in swine subject to hyperinsulinemic-euglycaemic clamps. pFUS modulated the activity of sensory projections to the hypothalamus, altered the concentrations of metabolism-regulating neurotransmitters, and enhanced glucose tolerance and utilization in the three species, whereas physical transection or chemical blocking of the liver-brain nerve pathway abolished the effect of pFUS on glucose tolerance. Longitudinal multi-omic profiling of metabolic tissues from the treated animals confirmed pFUS-induced modifications of key metabolic functions in liver, pancreas, muscle, adipose, kidney and intestinal tissues. Non-invasive ultrasound activation of afferent autonomic nerves may represent a non-pharmacologic therapy for the restoration of glucose homoeostasis in type-2 diabetes and other metabolic diseases.


Asunto(s)
Diabetes Mellitus Experimental , Glucosa , Animales , Diabetes Mellitus Experimental/terapia , Glucosa/metabolismo , Homeostasis , Hipotálamo/metabolismo , Hígado/metabolismo , Ratones , Ratas , Porcinos
9.
J Neurosci Methods ; 341: 108721, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32387189

RESUMEN

BACKGROUND: A fundamental limit to the study of the peripheral nervous system and its effect on organ function is the lack of tools to selectively target and stimulate specific neurons. Traditional implant and electrode-based systems remain too large and invasive for use at the organ or sub-organ level (without stimulating or effecting neighboring organs and tissues). Recent progress in optical and genetic tools (such as optogenetics) has provided a new level of molecular specificity and selectivity to the neurons that are stimulated by bioelectronic devices. However, the modified neurons that result from use of these tools (that can be selectively activated based on expression of light, heat, or stimuli sensitive ion channels) often still require stimulation by implantable devices and face difficult scientific, technical, and regulatory hurdles for clinical translation. NEW METHOD: Herein, we present a new tool for selective activation of neuronal pathways using anatomical site-specific, peripheral focused ultrasound neuromodulation (pFUS). RESULTS: We utilize three experimental models to expand upon and further characterize pFUS beyond data outlined to our initial report (Cotero et al., 2019a), and further demonstrate its importance as a new investigative and translational tool. First, we utilized an interconnected microporous gel scaffold to culture isolated dorsal root ganglion (DRG) neurons in an interconnected, three-dimensional in vitro culture. (Griffin et al., 2015, Tay et al., 2018) Using this system, we directly applied ultrasound (US) stimuli and confirmed US activation of peripheral neurons at pressures consistent with recent in vivo observations. (Cotero et al., 2019a, Zachs, 2019, Gigliotti et al., 2013) Next, we tested the capability of pFUS to activate previously reported nerve pathways at multiple locations within the neural circuit, including primary sensory ganglia (i.e. inferior ganglion of the vagus nerve), peripheral ganglia (i.e. sacral ganglia), and within target end-organs. In addition, we compared selective activation of multiple anatomically overlapping neural pathways (i.e. activation of the cholinergic anti-inflammatory pathway (Tracey, 2009, Pavlov and Tracey, 2012) vs. metabolic sensory pathways (O'Hare and Zsombok, 2015, Roh et al., 2016, Pocai et al., 2005) after stimulation of each separate target site. Finally, we utilized an established model of metabolic dysfunction (the LPS-induced inflammation/hyperglycemia model) to demonstrate pFUS capability to stimulate and assess alternative therapeutic stimulation sites (i.e. liver, pancreas, and intestines) in a simple and clinically relevant manner. This is demonstrated by ultrasound induced attenuation of LPS-induced hyperglycemia by stimulation at all three anatomical targets, and mapping of the effect to a specific molecular product of excitable cell types within each stimulus site. COMPARISON WITH EXISTING METHODS: The ease-of-use and non-invasive nature of pFUS provides a solution to many of the challenges facing traditional toolsets, such as implantable electrodes and genetic/optogenetic nerve stimulation strategies. CONCLUSIONS: The pFUS tool described herein provides a fundamental technology for the future study and manipulation of the peripheral nervous and neuroendocrine systems.


Asunto(s)
Neuronas , Optogenética , Vías Aferentes , Ganglios Espinales , Vías Nerviosas
10.
Bioelectron Med ; 6: 21, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33110929

RESUMEN

Background: Peripheral nerve reflexes enable organ systems to maintain long-term physiological homeostasis while responding to rapidly changing environmental conditions. Electrical nerve stimulation is commonly used to activate these reflexes and modulate organ function, giving rise to an emerging class of therapeutics called bioelectronic medicines. Dogma maintains that immune cell migration to and from organs is mediated by inflammatory signals (i.e. cytokines or pathogen associated signaling molecules). However, nerve reflexes that regulate immune function have only recently been elucidated, and stimulation of these reflexes for therapeutic effect has not been fully investigated. Methods: We utilized both electrical and ultrasound-based nerve stimulation to activate nerve pathways projecting to specific lymph nodes. Tissue and cell analysis of the stimulated lymph node, distal lymph nodes and immune organs is then utilized to measure the stimulation-induced changes in neurotransmitter/neuropeptide concentrations and immune cellularity in each of these sites. Results and conclusions: In this report, we demonstrate that activation of nerves and stimulated release of neurotransmitters within a local lymph node results in transient retention of immune cells (e.g. lymphocytes and neutrophils) at that location. Furthermore, such stimulation results in transient changes in neurotransmitter concentrations at distal organs of the immune system, spleen and liver, and mobilization of immune cells into the circulation. This report will enable future studies in which stimulation of these long-range nerve connections between lymphatic and immune organs can be applied for clinical purpose, including therapeutic modulation of cellularity during vaccination, active allergic response, or active auto-immune disease.

12.
SLAS Technol ; 24(4): 448-452, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31226243

RESUMEN

A new study published in Nature Communications outlines our group's results using focused ultrasound stimulation within peripheral organs to precisely activate autonomic nerve circuits. The concept is demonstrated by modulating two different (and potentially therapeutic) targets in animal models, a neuroimmune connection in the spleen (that modulates blood cytokine concentrations) and a nutrient sensory pathway within the liver (that modulates metabolism). Connected to this work is a companion Nature Communications publication that utilizes an ultrasound stimulus focused on the spleen to reduce disease severity in a serum-transferred rodent model of inflammatory arthritis. These reports highlight the growing evidence that ultrasound energy (previously shown to enable activation or modulation of central nervous system pathways) may be used to perform peripheral neuromodulation. In this commentary, we highlight the main findings and discuss their implications for new forms of ultrasound-based therapy. Though challenges remain, a new noninvasive method for precision neuromodulation could solve many of the challenges facing the nascent field of bioelectronic medicine. That is, the use of ultrasound to directly modulate neurophysiological systems therapeutically may provide alternatives to traditional pharmaceuticals. However, to alter the current pharmaceutical paradigm, the field will need to develop a new understanding of how traditional drug concepts (such as dose and pharmacokinetics-pharmacodynamics) relate to the parameters, protocols, and outcomes of this new stimulation technology.


Asunto(s)
Terapia por Ultrasonido , Vías Aferentes , Animales , Citocinas , Bazo , Ultrasonografía
13.
Nat Commun ; 10(1): 952, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862827

RESUMEN

Tools for noninvasively modulating neural signaling in peripheral organs will advance the study of nerves and their effect on homeostasis and disease. Herein, we demonstrate a noninvasive method to modulate specific signaling pathways within organs using ultrasound (U/S). U/S is first applied to spleen to modulate the cholinergic anti-inflammatory pathway (CAP), and US stimulation is shown to reduce cytokine response to endotoxin to the same levels as implant-based vagus nerve stimulation (VNS). Next, hepatic U/S stimulation is shown to modulate pathways that regulate blood glucose and is as effective as VNS in suppressing the hyperglycemic effect of endotoxin exposure. This response to hepatic U/S is only found when targeting specific sub-organ locations known to contain glucose sensory neurons, and both molecular (i.e. neurotransmitter concentration and cFOS expression) and neuroimaging results indicate US induced signaling to metabolism-related hypothalamic sub-nuclei. These data demonstrate that U/S stimulation within organs provides a new method for site-selective neuromodulation to regulate specific physiological functions.


Asunto(s)
Vías Nerviosas/fisiología , Neuroinmunomodulación/fisiología , Terapia por Ultrasonido/métodos , Animales , Hígado/inmunología , Hígado/inervación , Hígado/fisiología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Vías Nerviosas/inmunología , Especificidad de Órganos , Ratas , Ratas Sprague-Dawley , Bazo/inmunología , Bazo/inervación , Bazo/fisiología , Estimulación del Nervio Vago
14.
PLoS One ; 14(12): e0219724, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31881020

RESUMEN

Glioma is recognized to be a highly heterogeneous CNS malignancy, whose diverse cellular composition and cellular interactions have not been well characterized. To gain new clinical- and biological-insights into the genetically-bifurcated IDH1 mutant (mt) vs wildtype (wt) forms of glioma, we integrated data from protein, genomic and MR imaging from 20 treatment-naïve glioma cases and 16 recurrent GBM cases. Multiplexed immunofluorescence (MxIF) was used to generate single cell data for 43 protein markers representing all cancer hallmarks, Genomic sequencing (exome and RNA (normal and tumor) and magnetic resonance imaging (MRI) quantitative features (protocols were T1-post, FLAIR and ADC) from whole tumor, peritumoral edema and enhancing core vs equivalent normal region were also collected from patients. Based on MxIF analysis, 85,767 cells (glioma cases) and 56,304 cells (GBM cases) were used to generate cell-level data for 24 biomarkers. K-means clustering was used to generate 7 distinct groups of cells with divergent biomarker profiles and deconvolution was used to assign RNA data into three classes. Spatial and molecular heterogeneity metrics were generated for the cell data. All features were compared between IDH mt and IDHwt patients and were finally combined to provide a holistic/integrated comparison. Protein expression by hallmark was generally lower in the IDHmt vs wt patients. Molecular and spatial heterogeneity scores for angiogenesis and cell invasion also differed between IDHmt and wt gliomas irrespective of prior treatment and tumor grade; these differences also persisted in the MR imaging features of peritumoral edema and contrast enhancement volumes. A coherent picture of enhanced angiogenesis in IDHwt tumors was derived from multiple platforms (genomic, proteomic and imaging) and scales from individual proteins to cell clusters and heterogeneity, as well as bulk tumor RNA and imaging features. Longer overall survival for IDH1mt glioma patients may reflect mutation-driven alterations in cellular, molecular, and spatial heterogeneity which manifest in discernable radiological manifestations.


Asunto(s)
Glioma/genética , Isocitrato Deshidrogenasa/genética , Adulto , Anciano , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/patología , Estudios de Casos y Controles , Femenino , Técnica del Anticuerpo Fluorescente/métodos , Heterogeneidad Genética , Humanos , Isocitrato Deshidrogenasa/metabolismo , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Proteómica , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Secuenciación del Exoma/métodos
15.
Lab Chip ; 18(23): 3703, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30420988

RESUMEN

Correction for 'Unsupervised capture and profiling of rare immune cells using multi-directional magnetic ratcheting' by Coleman Murray et al., Lab Chip, 2018, 18, 2396-2409.

16.
Lab Chip ; 18(16): 2396-2409, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30039125

RESUMEN

Immunotherapies (IT) require induction, expansion, and maintenance of specific changes to a patient's immune cell repertoire which yield a therapeutic benefit. Recently, mechanistic understanding of these changes at the cellular level has revealed that IT results in complex phenotypic transitions in target cells, and that therapeutic effectiveness may be predicted by monitoring these transitions during therapy. However, monitoring will require unique tools that enable capture, manipulation, and profiling of rare immune cell populations. In this study, we introduce a method of automated and unsupervised separation and processing of rare immune cells, using high-force and multidimensional magnetic ratcheting (MR). We demonstrate capture of target immune cells using samples with up to 1 : 10 000 target cell to background cell ratios from input volumes as small as 25 microliters (i.e. a low volume and low cell frequency sample sparing assay interface). Cell capture is shown to achieve up to 90% capture efficiency and purity, and captured cell analysis is shown using both on-chip culture/activity assays and off-chip ejection and nucleic acid analysis. These results demonstrate that multi-directional magnetic ratcheting offers a unique separation system for dealing with blood cell samples that contain either rare cells or significantly small volumes, and the "sample sparing" capability leads to an expanded spectrum of parameters that can be measured. These tools will be paramount to advancing techniques for immune monitoring under conditions in which both the sample volume and number of antigen-specific target cells are often exceedingly small, including during IT and treatment of allergy, asthma, autoimmunity, immunodeficiency, cell based therapy, transplantation, and infection.


Asunto(s)
Separación Celular/instrumentación , Sistema Inmunológico/citología , Campos Magnéticos , Citocinas/metabolismo , Humanos
17.
Front Immunol ; 9: 638, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755449

RESUMEN

The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or µMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses.


Asunto(s)
Anticuerpos/metabolismo , Linfocitos B/inmunología , Ganglios Espinales/patología , Inflamación/inmunología , Células Receptoras Sensoriales/metabolismo , Animales , Antígenos/inmunología , Células Cultivadas , Inmunidad Humoral , Inmunización , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroinmunomodulación , Células Receptoras Sensoriales/inmunología
18.
PLoS One ; 12(11): e0188878, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29190747

RESUMEN

BACKGROUND: Tumor heterogeneity can manifest itself by sub-populations of cells having distinct phenotypic profiles expressed as diverse molecular, morphological and spatial distributions. This inherent heterogeneity poses challenges in terms of diagnosis, prognosis and efficient treatment. Consequently, tools and techniques are being developed to properly characterize and quantify tumor heterogeneity. Multiplexed immunofluorescence (MxIF) is one such technology that offers molecular insight into both inter-individual and intratumor heterogeneity. It enables the quantification of both the concentration and spatial distribution of 60+ proteins across a tissue section. Upon bioimage processing, protein expression data can be generated for each cell from a tissue field of view. RESULTS: The Multi-Omics Heterogeneity Analysis (MOHA) tool was developed to compute tissue heterogeneity metrics from MxIF spatially resolved tissue imaging data. This technique computes the molecular state of each cell in a sample based on a pathway or gene set. Spatial states are then computed based on the spatial arrangements of the cells as distinguished by their respective molecular states. MOHA computes tissue heterogeneity metrics from the distributions of these molecular and spatially defined states. A colorectal cancer cohort of approximately 700 subjects with MxIF data is presented to demonstrate the MOHA methodology. Within this dataset, statistically significant correlations were found between the intratumor AKT pathway state diversity and cancer stage and histological tumor grade. Furthermore, intratumor spatial diversity metrics were found to correlate with cancer recurrence. CONCLUSIONS: MOHA provides a simple and robust approach to characterize molecular and spatial heterogeneity of tissues. Research projects that generate spatially resolved tissue imaging data can take full advantage of this useful technique. The MOHA algorithm is implemented as a freely available R script (see supplementary information).


Asunto(s)
Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos
19.
Arthritis Rheumatol ; 69(3): 550-559, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27723282

RESUMEN

OBJECTIVE: To determine whether differentially methylated CpGs in synovium-derived fibroblast-like synoviocytes (FLS) of patients with rheumatoid arthritis (RA) were also differentially methylated in RA peripheral blood (PB) samples. METHODS: For this study, 371 genome-wide DNA methylation profiles were measured using Illumina HumanMethylation450 BeadChips in PB samples from 63 patients with RA and 31 unaffected control subjects, specifically in the cell subsets of CD14+ monocytes, CD19+ B cells, CD4+ memory T cells, and CD4+ naive T cells. RESULTS: Of 5,532 hypermethylated FLS candidate CpGs, 1,056 were hypermethylated in CD4+ naive T cells from RA PB compared to control PB. In analyses of a second set of CpG candidates based on single-nucleotide polymorphisms from a genome-wide association study of RA, 1 significantly hypermethylated CpG in CD4+ memory T cells and 18 significant CpGs (6 hypomethylated, 12 hypermethylated) in CD4+ naive T cells were found. A prediction score based on the hypermethylated FLS candidates had an area under the curve of 0.73 for association with RA case status, which compared favorably to the association of RA with the HLA-DRB1 shared epitope risk allele and with a validated RA genetic risk score. CONCLUSION: FLS-representative DNA methylation signatures derived from the PB may prove to be valuable biomarkers for the risk of RA or for disease status.


Asunto(s)
Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Metilación de ADN , Sinoviocitos/inmunología , Artritis Reumatoide/sangre , Linfocitos T CD4-Positivos/fisiología , Femenino , Humanos , Persona de Mediana Edad
20.
J Alzheimers Dis ; 52(2): 561-72, 2016 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-27031486

RESUMEN

Increasingly, clinical trials for Alzheimer's disease (AD) are being conducted earlier in the disease phase and with biomarker confirmation using in vivo amyloid PET imaging or CSF tau and Aß measures to quantify pathology. However, making such a pre-clinical AD diagnosis is relatively costly and the screening failure rate is likely to be high. Having a blood-based marker that would reduce such costs and accelerate clinical trials through identifying potential participants with likely pre-clinical AD would be a substantial advance. In order to seek such a candidate biomarker, discovery phase proteomic analyses using 2DGE and gel-free LC-MS/MS for high and low molecular weight analytes were conducted on longitudinal plasma samples collected over a 12-year period from non-demented older individuals who exhibited a range of 11C-PiB PET measures of amyloid load. We then sought to extend our discovery findings by investigating whether our candidate biomarkers were also associated with brain amyloid burden in disease, in an independent cohort. Seven plasma proteins, including A2M, Apo-A1, and multiple complement proteins, were identified as pre-clinical biomarkers of amyloid burden and were consistent across three time points (p <  0.05). Five of these proteins also correlated with brain amyloid measures at different stages of the disease (q <  0.1). Here we show that it is possible to detect a plasma based biomarker signature indicative of AD pathology at a stage long before the onset of clinical disease manifestation. As in previous studies, acute phase reactants and inflammatory markers dominate this signature.


Asunto(s)
Enfermedad de Alzheimer/sangre , Proteínas Amiloidogénicas/análisis , Benzotiazoles/análisis , Anciano , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Compuestos de Anilina , Biomarcadores/sangre , Encéfalo/patología , Química Encefálica , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones/métodos , Espectrometría de Masas en Tándem , Tiazoles , alfa-Macroglobulinas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA