Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(13): 5899-5910, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38502922

RESUMEN

The established benefits of ozone on microbial pathogen inactivation, natural organic matter degradation, and inorganic/organic contaminant oxidation have favored its application in drinking water treatment. However, viable bacteria are still present after the ozonation of raw water, bringing a potential risk to membrane filtration systems in terms of biofilm accumulation and fouling. In this study, we shed light on the role of the specific ozone dose (0.5 mg-O3/mg-C) in biofilm accumulation during long-term membrane ultrafiltration. Results demonstrated that ozonation transformed the molecular structure of influent dissolved organic matter (DOM), producing fractions that were highly bioavailable at a specific ozone dose of 0.5, which was inferred to be a turning point. With the increase of the specific ozone dose, the biofilm microbial consortium was substantially shifted, demonstrating a decrease in richness and diversity. Unexpectedly, the opportunistic pathogen Legionella was stimulated and occurred in approximately 40% relative abundance at the higher specific ozone dose of 1. Accordingly, the membrane filtration system with a specific ozone dose of 0.5 presented a lower biofilm thickness, a weaker fluorescence intensity, smaller concentrations of polysaccharides and proteins, and a lower Raman activity, leading to a lower hydraulic resistance, compared to that with a specific ozone dose of 1. Our findings highlight the interaction mechanism between molecular-level DOM composition, biofilm microbial consortium, and membrane filtration performance, which provides an in-depth understanding of the impact of ozonation on biofilm accumulation.


Asunto(s)
Ozono , Purificación del Agua , Membranas Artificiales , Ultrafiltración , Biopelículas
2.
Environ Sci Technol ; 58(27): 12281-12291, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38939969

RESUMEN

Significant progress has been made previously in the research and development of graphene oxide (GO) membranes for water purification, but their biofouling behavior remains poorly understood. In this study, we investigated the biofilm formation and biofouling of GO membranes with different surface microstructures in the context of filtering natural surface water and for an extended operation period (110 days). The results showed that the relatively hydrophilic and smooth Fe(OH)3/GO membrane shaped a thin and spatially heterogeneous biofilm with high stable flux. However, the ability to simultaneously mitigate biofilm formation and reduce biofouling was not observed in the weakly hydrophilic and wrinkled Fe/GO and H-Fe(OH)3/GO membranes. Microbial analyses revealed that the hydrophilicity and roughness distinguished the bacterial communities and metabolic functions. The organic matter-degrading and predatory bacteria were more adapted to hydrophilic and smooth GO surfaces. These functional taxa were involved in the degradation of extracellular polymeric substances (EPS), and improved biofilm heterogeneity. In contrast, the weakly hydrophilic and wrinkled GO surfaces had reduced biodiversity, while unexpectedly boosting the proliferation of EPS-secreting bacteria, resulting in increased biofilm formation and aggravated biofouling. Moreover, all GO membranes achieved sustainable water purification during the entire operating period.


Asunto(s)
Biopelículas , Incrustaciones Biológicas , Grafito , Purificación del Agua , Grafito/química , Membranas Artificiales , Óxidos/química
3.
Environ Sci Technol ; 58(2): 1164-1176, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164759

RESUMEN

Terrestrial dissolved organic matter (DOM) is critical to global carbon and nutrient cycling, climate change, and human health. However, how the spatial and compositional differences of soil DOM affect its dynamics and fate in water during the carbon cycle is largely unclear. Herein, the biodegradation of DOM from 14 spatially distributed grassland soils in China with diverse organic composition was investigated by 165 days of incubation experiments. The results showed that although the high humified fraction (high-HS) regions were featured by high humic-like fractions of 4-25 kDa molecular weight, especially the abundant condensed aromatics and tannins, they unexpectedly displayed greater DOM degradation during 45-165 days. In contrast, the unique proteinaceous and 25-100 kDa fractions enriched in the low humified fraction (low-HS) regions were drastically depleted and improved the decay of bulk DOM but only during 0-45 days. Together, DOM from the high-HS regions would cause lower CO2 outgassing to the atmosphere but higher organic loads for drinking water production in the short term than that from the low-HS regions. However, this would be reversed for the two regions during the long-term transformation processes. These findings highlight the importance of spatial and temporal variability of DOM biogeochemistry to mitigate the negative impacts of grassland soil DOM on climate, waters, and humans.


Asunto(s)
Materia Orgánica Disuelta , Suelo , Humanos , Pradera , Carbono , Agua , China
4.
Environ Sci Technol ; 57(33): 12489-12500, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37551789

RESUMEN

In situ Fe(III) coprecipitation from Fe2+ oxidation is a widespread phenomenon in natural environments and water treatment processes. Studies have shown the superiority of in situ Fe(III) (formed by in situ oxidation of a Fe(II) coagulant) over ex situ Fe(III) (using a Fe(III) coagulant directly) in coagulation, but the reasons remain unclear due to the uncertain nature of amorphous structures. Here, we utilized an in situ Fe(III) coagulation process, oxidizing the Fe(II) coagulant by potassium permanganate (KMnO4), to treat phosphate-containing surface water and analyzed differences between in situ and ex situ Fe(III) coagulation in phosphate removal, dissolved organic matter (DOM) removal, and floc growth. Compared to ex situ Fe(III), flocs formed by the natural oxidizing Fe2+ coagulant exhibited more effective phosphate removal. Furthermore, in situ Fe(III) formed through accelerated oxidation by KMnO4 demonstrated improved flocculation behavior and enhanced removal of specific types of DOM by forming a more stable structure while still maintaining effective phosphate removal. Fe K-edge extended X-ray absorption fine structure spectra (EXAFS) of the flocs explained their differences. A short-range ordered strengite-like structure (corner-linked PO4 tetrahedra to FeO6 octahedra) was the key to more effective phosphorus removal of in situ Fe(III) than ex situ Fe(III) and was well preserved when KMnO4 accelerated in situ Fe(III) formation. Conversely, KMnO4 significantly inhibited the edge and corner coordination between FeO6 octahedra and altered the floc-chain-forming behavior by accelerating hydrolysis, resulting in a more dispersed monomeric structure than ex situ Fe(III). This research provides an explanation for the superiority of in situ Fe(III) in phosphorus removal and highlights the importance of atomic-level structural differences between ex situ and in situ Fe(III) coprecipitates in water treatment.


Asunto(s)
Compuestos Férricos , Purificación del Agua , Compuestos Férricos/química , Materia Orgánica Disuelta , Fosfatos , Oxidación-Reducción , Compuestos Ferrosos/química , Fósforo , Purificación del Agua/métodos
5.
Environ Sci Technol ; 57(11): 4543-4555, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36877961

RESUMEN

The biodegradation in the middle and downstream of slow-rate biological activated carbon (BAC) is limited by insufficient dissolved oxygen (DO) concentrations. In this study, a bubbleless aerated BAC (termed ABAC) process was developed by installing a hollow fiber membrane (HFM) module within a BAC filter to continuously provide aeration throughout the BAC system. The BAC filter without an HFM was termed NBAC. The laboratory-scale ABAC and NBAC systems operated continuously for 426 days using secondary sewage effluent as an influent. The DO concentrations for NBAC and ABAC were 0.78 ± 0.27 and 4.31 ± 0.44 mg/L, respectively, with the latter providing the ABAC with greater electron acceptors for biodegradation and a microbial community with better biodegradation and metabolism capacity. The biofilms in ABAC secreted 47.3% less EPS and exhibited greater electron transfer capacity than those in NBAC, resulting in enhanced contaminant degradation efficiency and long-term stability. The extra organic matter removed by ABAC included refractory substances with a low elemental ratio of oxygen to carbon (O/C) and a high elemental ratio of hydrogen to carbon (H/C). The proposed ABAC filter provides a valuable, practical example of how to modify the BAC technology to shape the microbial community, and its activity, by optimizing the ambient atmosphere.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Filtración/métodos , Carbón Orgánico , Aguas del Alcantarillado , Biodegradación Ambiental , Biopelículas , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 57(30): 11096-11107, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467428

RESUMEN

Denitrification-driven Fe(II) oxidation is an important microbial metabolism that connects iron and nitrogen cycling in the environment. The formation of Fe(III) minerals in the periplasmic space has a significant effect on microbial metabolism and electron transfer, but direct evidence of iron ions entering the periplasm and resulting in periplasmic mineral precipitation and electron conduction properties has yet to be conclusively determined. Here, we investigated the pathways and amounts of iron, with different valence states and morphologies, entering the periplasmic space of the denitrifier Pseudomonas sp. JM-7 (P. JM-7), and the possible effects on the electron transfer and the denitrifying ability. When consistently provided with Fe(II) ions (from siderite (FeCO3)), the dissolved Fe(II) ions entered the periplasmic space and were oxidized to Fe(III), leading to the formation of a 25 nm thick crystalline goethite crust, which functioned as a semiconductor, accelerating the transfer of electrons from the intracellular to the extracellular matrix. This consequently doubled the denitrification rate and increased the electron transport capacity by 4-30 times (0.015-0.04 µA). However, as the Fe(II) concentration further increased to above 4 mM, the Fe(II) ions tended to preferentially nucleate, oxidize, and crystallize on the outer surface of P. JM-7, leading to the formation of a densely crystallized goethite layer, which significantly slowed down the metabolism of P. JM-7. In contrast to the Fe(II) conditions, regardless of the initial concentration of Fe(III), it was challenging for Fe(III) ions to form goethite in the periplasmic space. This work has shed light on the likely effects of iron on environmental microorganisms, improved our understanding of globally significant iron and nitrogen geochemical cycles in water, and expanded our ability to study and control these important processes.


Asunto(s)
Compuestos Férricos , Compuestos de Hierro , Periplasma/metabolismo , Agua , Desnitrificación , Compuestos de Hierro/química , Compuestos de Hierro/metabolismo , Minerales/química , Hierro/química , Oxidación-Reducción , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Nitrógeno/metabolismo
7.
Environ Sci Technol ; 56(12): 8908-8919, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35623093

RESUMEN

A biofilm has a significant effect on water treatment processes. Currently, there is a lack of knowledge about the effect of temperature on the biofilm structure in water treatment processes. In this study, a gravity-driven membrane ultrafiltration system was operated with river feedwater at two temperatures ("low", 4 °C; "high", 25 °C) to explore the biofilm structure and transformation mechanism. The results showed that the difference in dissolved oxygen concentration might be one of the main factors regulating the structural components of the biofilm. A denser biofilm formation and reduced flux were observed at the lower temperature. The linoleic acid metabolism was significantly inhibited at low temperature, resulting in enhanced pyrimidine metabolism by Na+ accumulation. In addition, the biofilm at low temperature had a higher proportion of the metabolites of lipids and lipid-like molecules (11.25%), organic acids and derivatives (10.83%), nucleosides, nucleotides, and analogues (7.083%), and organoheterocyclic compounds (6.66%). These small molecules secrete more polysaccharides having C═O and O═C-O functional groups, which intensified the resistance of the biofilm. Furthermore, the upregulation pathway of pyrimidine metabolism also increased the risk of urea accumulation at low temperature. Limnohabitans, Deinococcus, Diaphorobacter, Flavobacterium, and Pseudomonas were identified as the principal microorganisms involved in this metabolic transformation.


Asunto(s)
Membranas Artificiales , Microbiota , Biopelículas , Metabolómica , Pirimidinas , Temperatura
8.
Environ Sci Technol ; 56(7): 4345-4355, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35319869

RESUMEN

The oxidation-precipitation process of Fe(II) is ubiquitous in the environment and critically affects the fate of contaminants and nutrients in natural systems where Fe(II) is present. Here, we explored the effect of H2O2 concentration on the structure of precipitates formed by Fe(II) oxidation and compared the precipitates to those formed by Fe(III) hydrolysis. Additionally, the phosphate retention under different H2O2 concentrations was evaluated. XRD, TEM, PDA, XPS, and UV-visible absorbance spectroscopy were used to characterize the structure of the formed precipitates; UV-visible absorbance spectroscopy was also used to determine the residual phosphate and Fe(II) in solution. It was found that the predominant precipitates in Fe(II) solution changed from planar-shaped crystalline lepidocrocite (γ-FeOOH) to poor short-range order (poorly crystalline) spherical-shaped hydrous ferric oxide (HFO) with increasing H2O2 concentrations. Although the HFO precipitates formed from Fe(II) resembled those formed from Fe(III) hydrolysis, the former was larger and had clearer lattice fringes. During the formation of γ-FeOOH, both Fe(II)-Fe(III) complexes and ligand-to-metal charge transfer processes were observed, and it was found that Fe(II) was present in the planar-shaped precipitates. Fe(II) might be present in the interior of precipitates as Fe(OH)2, which could serve as a nucleus for the epitaxial growth of γ-FeOOH. In addition, the extent of phosphate retention increased with the H2O2 concentration, indicating the increased reactivity of formed precipitates with H2O2 concentration. More phosphate was retained via coprecipitation with Fe than adsorption on the preformed Fe precipitates due to the incorporation of phosphate within the structure of the formed Fe hydroxyphosphate via coprecipitation.


Asunto(s)
Compuestos Férricos , Fosfatos , Compuestos Férricos/química , Compuestos Ferrosos , Peróxido de Hidrógeno , Oxidación-Reducción , Fosfatos/química
9.
Environ Sci Technol ; 55(11): 7456-7465, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33999616

RESUMEN

Most coagulation studies focus on pollutant removal or floc separation efficiency. However, to understand the mechanism of coagulation, it is necessary to explore the behavior of coagulation in terms of the interactions among the functional groups on the surface of the metal hydrolysis precipitates during the hydrolysis process. In this study, for the first time, aluminum sulfate (alum) was used to investigate such interactions over the whole process sequence of hydrolysis, coagulation, and crystallization with, and without (as a control), the presence of specific low molecular weight (LMW) (molecular weight < 1000 Da) organic compounds with different chemical bonds. It was observed that primary nanoparticles (NPs) of around 10 nm size were produced during the hydrolysis of alum. The presence of organic compounds was found to influence the coagulation performance by affecting the metal hydrolysis and the properties of the nanoparticles. At pH 7, ethylenediaminetetraacetic acid disodium salt (EDTA) delayed the time when the particles start to aggregate but increased the maximum size of the flocs, while citric acid caused the crystallization of amorphous hydrates and inhibited the coagulation performance. In contrast, glucose, benzoic acid (BEN), and tris(hydroxymethyl)aminomethane (THMAM) had no significant effect on the coagulation performance. Therefore, LMW organics can bond to the hydrolysis products of metal ions through key functional groups, such as carboxyl groups, and then affect the coagulation process. The experimental results show that the presence of LMW organics can change the surface properties and degree of crystallization of the primary NPs, thereby affecting the performance of coagulation.


Asunto(s)
Nanopartículas , Purificación del Agua , Compuestos de Alumbre , Cristalización , Floculación , Hidrólisis
10.
Environ Sci Technol ; 55(3): 2076-2086, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33435682

RESUMEN

The presence of biopolymers in surface waters and their significance for potable water supply have received little attention previously owing to their low concentrations. In this paper, we present the results of an extensive study that has investigated the role and benefits of biopolymers during the purification of surface water with reference to their specific biological and physico-chemical properties. Using samples collected from two representative surface waters in China and the United Kingdom, macromolecular biopolymers were separated and concentrated for subsequent investigation of their role in coagulation, metal ion adsorption, and membrane separation. Our results show that biopolymers significantly improve the antifouling capability of membrane nanofiltration, in combination with the enhanced conventional coagulation performance and additional security against several unhealthy metal pollutants (e.g., Fe, Al, and Cr). We believe this is the first study that reveals the versatile benefits and the fate of natural biopolymers in surface water purification processes.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Biopolímeros , China , Reino Unido , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
11.
Environ Sci Technol ; 53(20): 11949-11959, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31538767

RESUMEN

Graphene oxide (GO) is an ideal membrane material for water treatment due to its outstanding physicochemical properties and unique lamellar structure. However, the separation performance and practical application of GO membranes are mainly affected by the interlayer spacing and stability in aqueous solutions. Here, we report a novel and facile approach to fabricating GO membranes with adjustable interlayer spacing and high stability in aqueous solutions through cross-linking with polyaluminum chloride (PACl). With this approach, the lamellar spacing can be adjusted by changing the OH/Al ratios (B values) of the PACl, and the GO nanosheets can be tightly bonded by the strong electrostatic effect that PACl provides between them. The average interlayer spacing of the GO layer could be varied approximately in the range of 0.80-1.09 nm. The PACl-GO membranes demonstrated excellent stability in water and inorganic/organic solutions when the concentration of PACl was 0.1, 1, and 10 mM, remaining unchanged for at least 2 weeks. Moreover, the PACl-GO membranes featured exceptional sieving capabilities for model and natural organic substrates, while it was also observed that increasing the interlayer spacing of the PACl-GO membranes increased both the membrane flux and the separation performance of organic matter.


Asunto(s)
Grafito , Purificación del Agua , Hidróxido de Aluminio , Óxidos
12.
Environ Sci Technol ; 50(4): 1828-33, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26757278

RESUMEN

Hydrous oxides of Al(III) and Fe(III) play a large part in environmental processes and in the action of coagulants used in water and wastewater treatment. Aggregates (flocs) of hydroxide precipitates can be rather weak and are easily broken by applied shear. It is usually found that broken flocs do not fully regrow under low-shear conditions, and this could be a serious disadvantage in practical applications. The irreversible nature of floc breakage suggests that some form of specific, chemical interaction between precipitate particles must be at least partly responsible. On the basis of experiments reported here and elsewhere, we propose that hydroxyl bridges between particles play a part. When these are broken, there is a reduction in the number of "active" surface groups that are able to form new bridges. When small amounts of fluoride are added during breakage of Al flocs, there can be significant improvement in floc regrowth, although this depends on a number of factors, especially pH. With Fe flocs, fluoride has no noticeable effect. These results can be explained by the formation of soluble Al-F complexes and some dissolution of the Al(OH)3 precipitate. This creates a new surface with more "active" groups that can form new hydroxyl bridges.


Asunto(s)
Fluoruros/química , Hidróxidos/química , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/química , Purificación del Agua , Compuestos de Aluminio/química , Compuestos Férricos/química , Floculación
14.
Water Res ; 252: 121193, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290239

RESUMEN

Biofiltration is an environmentally 'green' technology that is compatible with the recently proposed sustainable development goals, and which has an increasingly important future in the field of water treatment. Here, we explored the impacts of bioelectrochemical integration on a bench-scale slow rate biofiltration system regarding its performance in reclaimed water treatment. Results showed that the short-term (<3 months) integration improved the removal of natural organic matter (NOM) (approximately 8.8%). After long-term (5 months and thereafter) integration, the cathodic charge transfer resistance was found to have a significant reduction from 2662 to 1350 Ω. Meanwhile, bioelectrochemical autotrophic sulfate (SO42-) reduction (over 27.6% reduction) through the syntrophic metabolism between hydrogen oxidation strains (genus Hydrogenophaga) and sulfate-reducing microbes (genera Dethiobacter, Desulfovibrio, and Desulfomicrobium) at the cathodic region was observed. More significantly, the microbial-derived chromophoric humic substances were found to act as electron shuttles at the cathodic region, which might facilitate the process of bioelectrochemical SO42- reduction. Overall, this study provided valuable insights into the potential application of bioelectrochemical-integrated biofilter for simultaneous reduction of NOM and SO42- treating reclaimed water.


Asunto(s)
Sulfatos , Purificación del Agua , Oxidación-Reducción , Procesos Autotróficos , Purificación del Agua/métodos , Sustancias Húmicas/análisis
15.
Water Res ; 262: 122146, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39079425

RESUMEN

The formation of flocs is crucial in the coagulation process of water treatment. However, the nature of ligand exchange on the surface of primary nanoparticles (PNPs) during floc formation requires further investigation to enhance our understanding of the coagulation mechanism. Phosphate (P) is a ubiquitous nutrient ion in aquatic surface water, in this study, the impact of P on floc growth under different pH conditions were investigated. The results revealed that floc growth patterns depended on both P dosage and pH. The mode of ligand exchange between P and in-situ formed ferric hydroxide within a pH range of 5 to 10 was further explored, and remarkable disparities in pH changes induced by P addition were observed. At lower pH levels, OH- release occurred relatively slowly, stabilizing with continued P addition. At neutral pH, OH- release was comparatively higher with P addition, while under alkaline conditions, both the quantity of OH- and its release rate decreased. It was deduced that Fe-OH21/2+ sites function as "active sites," while Fe-OH1/2- sites act as "inert sites" on the surface of PNPs formed during flocculation. These sites are crucial in the interconnections between flocs formed during coagulation and in floc growth. Analyses of Fe PNPs by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), with and without P addition, revealed that the introduction of P inhibits or interferes with the self-crystallization of Fe PNPs through chemical coordination reactions. The results offer deeper insights into the coagulation mechanism and the transformation of Fe flocs in raw waters containing P during water treatment practices.


Asunto(s)
Floculación , Fosfatos , Purificación del Agua , Fosfatos/química , Concentración de Iones de Hidrógeno , Hierro/química , Compuestos Férricos/química , Nanopartículas/química
16.
Water Res ; 262: 122047, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39003956

RESUMEN

Dissolved organic matter (DOM) plays a pivotal role in drinking water treatment, influencing the performance of unit processes and final water quality (e.g. disinfection byproduct risk). Biofiltration is an effective method of reducing DOM, but currently lacks a comprehensive appreciation of the association between microbial profiles and biofiltration performance. In this study, bench-scale biofiltration units inoculated with microbial consortia from river and soil matrices were operated successively for comparing their efficacy in terms of DOM removal. The results showed that biofiltration units receiving soil microbes were significantly superior (p < 0.05) to those receiving river inoculated microbes in terms of decomposing DOM recalcitrant fractions and reducing DBP formation potential, resulting in DOC and DBP precursor removals of up to 58.4 % and 87.9 %, respectively. Characterization of the taxonomic composition revealed that differences in the microbial assembly of the two biofilter groups were subject to deterministic rather than stochastic factors. Furthermore, more complicated interspecific relationships and niche structures in soil inoculated biofilters were deciphered by co-occurrence network, providing a plausible profile on a taxonomic division of labor in DOM stepwise degradation. Accordingly, the contribution of microbial compositions was found to be of greater importance than the GAC mass and biomass attached to the media. Thus, this study has advanced the understanding of microbial-mediated DOM decomposition in biofiltration, and also provided a promising strategy for enhancing the process for water use via developing appropriate engineered consortia of bacteria.


Asunto(s)
Filtración , Consorcios Microbianos , Purificación del Agua/métodos , Compuestos Orgánicos/metabolismo , Biodegradación Ambiental , Ríos/microbiología , Microbiología del Suelo
17.
J Hazard Mater ; 472: 134522, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38714057

RESUMEN

Electro-catalytic conversion of nitrate (NO3-) to ammonia (NH3) via the Nitrate Reduction to Ammonia (NORA) process represents a promising strategy for both ammonia synthesis and environmental remediation. Despite its potential, the efficiency of low-concentration NORA is often hindered by mass transfer limitations, competing byproducts (N2 and NO2-), and side reactions such as hydrogen evolution. This study introduces a novel pulsed electro-synthesis technique that alternates the potential to periodically accumulate and transform NO2- intermediates near a Cu2O@Pd electrode, enhancing the NORA process. Compared with that under potentiostatic conditions, the Cu2O@Pd electrodes exhibited a higher NORA activity under the optimized pulsed condition, where a NH3-N Faradaic efficiency (FE) of 81.2%, a yield rate of 1.08 mg h-1 cm-2 and a selectivity efficiency (SE) of 81.5%, were achieved. In-situ characterization revealed an enhancement mechanism characterized by optimized adsorption of the key *NO intermediate, followed by the hydrogenation path "*N → *NH → *NH2→ *NH3". Further investigations indicated the electro-catalytic synergies between Pd sites and Cu species, where the Pd atoms were the reaction sites for the H adsorption while the Cu species were responsible for the NO3- activation. This research offers a novel insight into a method of enhancing low-concentration NORA.

18.
Water Res ; 254: 121352, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401286

RESUMEN

Coagulation efficiency is heavily contingent upon a profound comprehension of the underlying mechanisms, facilitated by the evolution of coagulation theory. However, the role of anions, prevalent components in raw and wastewaters, has been relatively overlooked in this context. To address this gap, this study has investigated the impact of three common anions (i.e., chloride, sulfate, and phosphate) on Al-based coagulation. The results have shown that the influence of anions on coagulation depends predominantly on their ability to compete with hydroxyl groups throughout the entire coagulation process, encompassing hydrolysis, aggregation, and the growth of large flocs. Moreover, this competition is subject to the dual influence of both anion concentration and hydroxyl concentration (i.e., pH). The results have revealed the intricate interplay between anions and coagulants, their impact on floc structure, and their importance in optimizing coagulation efficiency and ensuring the production of high-quality water.


Asunto(s)
Sulfatos , Purificación del Agua , Floculación , Aniones , Aguas Residuales , Cationes , Purificación del Agua/métodos
19.
Water Res ; 253: 121268, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340700

RESUMEN

The release of nanoplastics (NPs) into the environment is growing due to the extensive use of plastic products. Numerous studies have confirmed the negative effects of NPs on microorganisms, which poses uncertainties concerning their impact on nanofiltration (NF) membrane biofouling. This study investigated the initial cell adhesion process, NF membrane biofouling kinetic processes and bacterial responses of Pseudomonas aeruginosa (P. aeruginosa) exposed to varied NPs concentrations (0-50 mg·L-1). Transcriptome analysis demonstrated that low concentration of NPs (0.1 mg·L-1) promoted bacterial quorum sensing, energy metabolism, exopolysaccharide biosynthesis and bacterial secretion systems. Correspondingly, the polysaccharide content increased remarkably to 2.77 times the unexposed control, which served as a protective barrier for bacteria to avoid the impact of NPs-induced stress. Suppressed homologous recombination, microbial metabolic potentials and flagellar assembly were detected in bacteria exposed to a high concentration (50 mg·L-1) of NPs, mainly due to the triggered reactive oxygen species (ROS) generation, genomic DNA damage, and decreased energy production. Overall, enhanced formation of the extracellular polymeric substances (EPS) and aggravated membrane flux decline were observed when NPs interacted with the membrane surface by cell secretions (low NPs levels) or cell lysis (high NPs levels). These findings shed light on understanding the microbial metabolism mechanism and membrane biofouling propensity with NPs stress at both the molecular and gene levels.


Asunto(s)
Incrustaciones Biológicas , Microplásticos , Membranas Artificiales , Percepción de Quorum , Bacterias , Biopelículas
20.
J Hazard Mater ; 476: 135185, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39013320

RESUMEN

Membrane fouling generated by small molecular-weight aromatic compounds with poor biodegradability is a major barrier to advanced petrochemical wastewater treatment using nanofiltration (NF) technology. In this study, the fouling behavior of ten BTEX with different substituent existing in petrochemical wastewater on the NF membrane was systematically investigated. By examining the effect of the number, position, and type of substituents on the permeability of NF membranes and membrane resistance analysis, combined with XDLVO theory and correlation analysis, we found that stronger dipole-dipole interactions of BTEX with higher polarity and hydrogen bonding effects between substituents and the membrane surface were verified to be the main forces driving the attachment to the surface of membranes. Furthermore, by analyzing the effect of common inorganic ions in petrochemical wastewater on membrane fouling, it was found that electron-donating substituents (-CH3, -C2H5, and -NH2) enhanced the electron cloud density of the benzene ring, a process that exacerbated membrane fouling by strengthening electrostatic interactions between the benzene ring and Ca2+ ions. The fouling potential of electron-withdrawing substituted (-NO2, -OH) BTEX exhibited the opposite trend. Overall, this study provides a theoretical basis for developing effective membrane fouling control strategies in NF advanced treatment of petrochemical wastewater. ENVIRONMENTAL IMPLICATION: Aromatic chemicals in petrochemical effluent are difficult to degrade, and their accumulation will cause significant harm to humans and ecological systems. Determine the composition of small molecule BTEX in petrochemical wastewater, gain an in-depth comprehension of the membrane fouling behavior of nanofiltration membrane filtration, identify the primary forces causing irreversible membrane surface fouling using experimental data and model fitting, and propose viable anti-fouling membrane modification strategies. Establish a technical foundation for membrane fouling management in the long-term operation of petrochemical wastewater membrane treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA