RESUMEN
SUMMARY: The reliable and timely recognition of outbreaks is a key component of public health surveillance for foodborne diseases. Whole genome sequencing (WGS) offers high resolution typing of foodborne bacterial pathogens and facilitates the accurate detection of outbreaks. This detection relies on grouping WGS data into clusters at an appropriate genetic threshold. However, methods and tools for selecting and adjusting such thresholds according to the required resolution of surveillance and epidemiological context are lacking. Here we present DODGE (Dynamic Outbreak Detection for Genomic Epidemiology), an algorithm to dynamically select and compare these genetic thresholds. DODGE can analyse expanding datasets over time and clusters that are predicted to correspond to outbreaks (or "investigation clusters") can be named with established genomic nomenclature systems to facilitate integrated analysis across jurisdictions. DODGE was tested in two real-world Salmonella genomic surveillance datasets of different duration, 2 months from Australia and 9 years from the United Kingdom. In both cases only a minority of isolates were identified as investigation clusters. Two known outbreaks in the United Kingdom dataset were detected by DODGE and were recognized at an earlier timepoint than the outbreaks were reported. These findings demonstrated the potential of the DODGE approach to improve the effectiveness and timeliness of genomic surveillance for foodborne diseases and the effectiveness of the algorithm developed. AVAILABILITY AND IMPLEMENTATION: DODGE is freely available at https://github.com/LanLab/dodge and can easily be installed using Conda.
Asunto(s)
Algoritmos , Brotes de Enfermedades , Enfermedades Transmitidas por los Alimentos , Genoma Bacteriano , Humanos , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/epidemiología , Secuenciación Completa del Genoma/métodos , Genómica/métodos , Australia , Reino Unido , Salmonella/genéticaRESUMEN
In Queensland, Australia, 31 of 96 Shiga toxinâproducing Escherichia coli cases during 2020-2022 were reported by a specialty pathology laboratory servicing alternative health practitioners. Those new cases were more likely to be asymptomatic or paucisymptomatic, prompting a review of the standard public health response.
Asunto(s)
Infecciones por Escherichia coli , Síndrome Hemolítico-Urémico , Escherichia coli Shiga-Toxigénica , Humanos , Escherichia coli Shiga-Toxigénica/genética , Infecciones por Escherichia coli/diagnóstico , Infecciones por Escherichia coli/epidemiología , Queensland/epidemiología , Diarrea/diagnóstico , Síndrome Hemolítico-Urémico/diagnóstico , Australia/epidemiologíaRESUMEN
The bacterium Vibrio parahaemolyticus is ubiquitous in tropical and temperate waters throughout the world and causes infections in humans resulting from water exposure and from ingestion of contaminated raw or undercooked seafood, such as oysters. We describe a nationwide outbreak of enteric infections caused by Vibrio parahaemolyticus in Australia during September 2021-January 2022. A total of 268 persons were linked with the outbreak, 97% of whom reported consuming Australia-grown oysters. Cases were reported from all states and territories of Australia. The outbreak comprised 2 distinct strains of V. parahaemolyticus, sequence types 417 and 50. We traced oysters with V. parahaemolyticus proliferation back to a common growing region within the state of South Australia. The outbreak prompted a national recall of oysters and subsequent improvements in postharvest processing of the shellfish.
Asunto(s)
Brotes de Enfermedades , Enfermedades Transmitidas por los Alimentos , Ostreidae , Vibriosis , Vibrio parahaemolyticus , Vibrio parahaemolyticus/clasificación , Vibrio parahaemolyticus/aislamiento & purificación , Humanos , Ostreidae/microbiología , Animales , Vibriosis/epidemiología , Vibriosis/microbiología , Australia/epidemiología , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/microbiología , Masculino , Adulto , Femenino , Persona de Mediana Edad , Adolescente , Adulto Joven , Anciano , Niño , Preescolar , Mariscos/microbiología , Lactante , Intoxicación por Mariscos/epidemiología , Microbiología de AlimentosRESUMEN
Melioidosis, caused by the environmental gram-negative bacterium Burkholderia pseudomallei, usually develops in adults with predisposing conditions and in Australia more commonly occurs during the monsoonal wet season. We report an outbreak of 7 cases of melioidosis in immunocompetent children in Australia. All the children had participated in a single-day sporting event during the dry season in a tropical region of Australia, and all had limited cutaneous disease. All case-patients had an adverse reaction to oral trimethoprim/sulfamethoxazole treatment, necessitating its discontinuation. We describe the clinical features, environmental sampling, genomic epidemiologic investigation, and public health response to the outbreak. Management of this outbreak shows the potential benefits of making melioidosis a notifiable disease. The approach used could also be used as a framework for similar outbreaks in the future.
Asunto(s)
Burkholderia pseudomallei , Melioidosis , Adulto , Humanos , Niño , Melioidosis/diagnóstico , Melioidosis/tratamiento farmacológico , Melioidosis/epidemiología , Burkholderia pseudomallei/genética , Australia/epidemiología , Genómica , Brotes de EnfermedadesRESUMEN
Toxigenic diphtheria is rare in Australia with generally fewer than 10 cases reported annually; however, since 2020, there has been an increase in toxin gene-bearing isolates of Corynebacterium diphtheriae cases in North Queensland, with an approximately 300% escalation in cases in 2022. Genomic analysis on both toxin gene-bearing and non-toxin gene-bearing C. diphtheriae isolated from this region between 2017 and 2022 demonstrated that the surge in cases was largely due to one sequence type (ST), ST381, all of which carried the toxin gene. ST381 isolates collected between 2020 and 2022 were highly genetically related to each other, and less closely related to ST381 isolates collected prior to 2020. The most common ST in non-toxin gene-bearing isolates from North Queensland was ST39, an ST that has also been increasing in numbers since 2018. Phylogenetic analysis demonstrated that ST381 isolates were not closely related to any of the non-toxin gene-bearing isolates collected from this region, suggesting that the increase in toxigenic C. diphtheriae is likely due to the expansion of a toxin gene-bearing clone that has moved into the region rather than an already endemic non-toxigenic strain acquiring the toxin gene.
Asunto(s)
Corynebacterium diphtheriae , Difteria , Brotes de Enfermedades , Humanos , Australia/epidemiología , Corynebacterium diphtheriae/genética , Difteria/epidemiología , Toxina Diftérica/genética , Genómica , Filogenia , Queensland , Epidemiología Molecular , Salud PúblicaRESUMEN
We report a multistate Salmonella enterica serovar Heidelberg outbreak in Australia during 2018-2019. Laboratory investigation of cases reported across 5 jurisdictions over a 7-month period could not identify a source of infection but detected indicators of severity and invasiveness. The hospitalization rate of 36% suggested a moderately severe clinical picture.
Asunto(s)
Intoxicación Alimentaria por Salmonella , Salmonella enterica , Australia/epidemiología , Brotes de Enfermedades , Humanos , Intoxicación Alimentaria por Salmonella/epidemiología , SerogrupoRESUMEN
BACKGROUND: The purpose of this study was to investigate the use of routinely available rectal swabs as a surrogate sample type for testing the gut microbiome and monitoring antibiotic effects on key gut microorganisms, of patients hospitalised in an intensive care unit. A metagenomic whole genome sequencing approach was undertaken to determine the diversity of organisms as well as resistance genes and to compare findings between the two sampling techniques. RESULTS: No significant difference was observed in overall diversity between the faeces and rectal swabs and sampling technique was not demonstrated to predict microbial community variation. More human DNA was present in the swabs and some differences were observed only for a select few anaerobes and bacteria also associated with skin and/or the female genitourinary system, possibly reflecting sampling site or technique. Antibiotics and collections at different times of admission were both considered significant influences on microbial community composition alteration. Detection of antibiotic resistance genes between rectal swabs and faeces were overall not significantly different, although some variations were detected with a potential association with the number of human sequence reads in a sample. CONCLUSION: Testing the gut microbiome using standard rectal swab collection techniques currently used for multi-resistant organism screening has been demonstrated to have utility in gut microbiome monitoring in intensive care. The use of information from this article, in terms of methodology as well as near equivalence demonstrated between rectal swabs and faeces will be able to support and potentially facilitate the introduction into clinical practice.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Antibacterianos , Cuidados Críticos , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Humanos , Microbiota/genética , ARN Ribosómico 16S/genéticaRESUMEN
BACKGROUND: Acquisition of IncI1 plasmids by members of the Enterobacteriaceae sometimes leads to transfer of antimicrobial resistance and colicinogeny as well as change of phage type in Salmonella Typhimurium. Isolates of S. Typhimurium from a 2015 outbreak of food poisoning were found to contain an IncI1 plasmid implicated in change of phage type from PT135a to U307 not previously reported. The origin of the changes of phage type associated with this IncI1 plasmid was investigated. In addition, a comparison of its gene composition with that of IncI1 plasmids found in local isolates of S. Typhimurium typed as U307 from other times was undertaken. This comparison was extended to IncI1 plasmids in isolates of phage types PT6 and PT6 var. 1 which are thought to be associated with acquisition of IncI1 plasmids. RESULTS: Analysis of IncI1 plasmids from whole genome sequencing of isolates implicated a gene coding for a 1273 amino acid protein present only in U307 isolates as the likely source of change of phage type. The IncI1 plasmids from PT6 and PT6 var. 1 isolates all had the ibfA gene present in IncI1 plasmid R64. This gene inhibits growth of bacteriophage BF23 and was therefore the possible source of change of phage type. A fuller comparison of the genetic composition of IncI1 plasmids from U307 isolates and PT6 and PT6 var. 1 isolates along with two IncI1 plasmids from S. Typhimurium isolates not showing change of phage type was undertaken. Plasmids were classified as either 'Delta' or 'Col' IncI1 plasmids according to whether genes between repZ and the rfsF site showed high identity to genes in the same location in R64 or ColIb-P9 plasmids respectively. Comparison of the tra gene sets and the pil gene sets across the range of sequenced plasmids identified Delta and Col plasmids with almost identical sequences for both sets of genes. This indicated a genetic recombination event leading to a switch between Delta and Col gene sets at the rfsF site. Comparisons of other gene sets showing significant variation among the sequenced plasmids are reported. Searches of the NCBI GenBank database using DNA and protein sequences of interest from the sequenced plasmids identified global IncI1 plasmids with extensive regions showing 99 to 100% identity to some of the plasmids sequenced in this study indicating evidence for widespread distribution of these plasmids. CONCLUSION: Two genes possibly associated with change of phage type were identified in IncI1 plasmids. IncI1 plasmids were classified as either 'Delta' or 'Col' plasmids and other sequences of significant variation among these plasmids were identified. This study offers a new perspective on the understanding of the gene composition of IncI1 plasmids. The sequences of newly sequenced IncI1 plasmids could be compared against the regions of significant sequence variation identified in this study to understand better their overall gene composition and relatedness to other IncI1 plasmids in the databases.
Asunto(s)
Plásmidos/genética , Salmonella typhimurium/genética , Salmonella typhimurium/virología , Tipificación MolecularRESUMEN
Epidemiological surveillance of Shigella spp. in Australia is conducted to inform public health response. Multi-drug resistance has recently emerged as a contributing factor to sustained local transmission of Shigella spp. All data were collected as part of routine public health surveillance, and strains were whole-genome sequenced for further molecular characterisation. 108 patients with an endemic regional Shigella flexneri strain were identified between 2016 and 2019. The S. flexneri phylogroup 3 strain endemic to northern Australia acquired a multi-drug resistance conferring blaDHA plasmid, which has an IncFII plasmid backbone with virulence and resistance elements typically found in IncR plasmids. This is the first report of multi-drug resistance in Shigella sp. in Australia that is not associated with men who have sex with men. This strain caused an outbreak of multi-drug-resistant S. flexneri in northern Australia that disproportionality affects Aboriginal and Torres Strait Islander children. Community controlled public health action is recommended.
Asunto(s)
Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple/genética , Disentería Bacilar , Enfermedades Endémicas , Shigella flexneri , Adolescente , Australia/epidemiología , Disentería Bacilar/epidemiología , Disentería Bacilar/microbiología , Humanos , Plásmidos , Shigella flexneri/genética , Shigella flexneri/aislamiento & purificaciónRESUMEN
Between February and April 2018, three ceftriaxone-resistant and high-level azithromycin-resistant Neisseria gonorrhoeae cases were identified; one in the United Kingdom and two in Australia. Whole genome sequencing was used to show that the isolates from these cases belong to a single gonococcal clone, which we name the A2543 clone.
Asunto(s)
Azitromicina/uso terapéutico , Ceftriaxona/uso terapéutico , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/aislamiento & purificación , Adulto , Antibacterianos/uso terapéutico , Australia , Azitromicina/farmacología , Ceftriaxona/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Genotipo , Gonorrea/tratamiento farmacológico , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Neisseria gonorrhoeae/efectos de los fármacos , Filogenia , Polimorfismo de Nucleótido Simple , Vigilancia de Guardia , Reino Unido , Secuenciación Completa del GenomaRESUMEN
After conventional molecular and serologic testing failed to diagnose the cause of illness, deep sequencing identified spotted fever group Rickettsia DNA in a patient's blood sample. Sequences belonged to R. honei, the causative agent of Flinders Island spotted fever. Next-generation sequencing is proving to be a useful tool for clinical diagnostics.
Asunto(s)
Rickettsia/aislamiento & purificación , Rickettsiosis Exantemáticas/diagnóstico , ADN Bacteriano/sangre , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Queensland , Rickettsia/clasificación , Rickettsia/genética , Análisis de Secuencia de ADN , Rickettsiosis Exantemáticas/microbiologíaRESUMEN
By conducting a molecular characterization of Corynebacterium diphtheriae strains in Australia, we identified novel sequences, nonfunctional toxin genes, and 5 recent cases of toxigenic cutaneous diphtheria. These findings highlight the importance of extrapharyngeal infections for toxin gene-bearing (functional or not) and non-toxin gene-bearing C. diphtheriae strains. Continued surveillance is recommended.
Asunto(s)
Corynebacterium diphtheriae/patogenicidad , Toxina Diftérica/genética , Difteria/epidemiología , Genes Bacterianos , Australia/epidemiología , Corynebacterium diphtheriae/genética , Difteria/inmunología , Difteria/microbiología , Difteria/prevención & control , Toxina Diftérica/biosíntesis , Toxoide Diftérico/administración & dosificación , Monitoreo Epidemiológico , Humanos , Extremidad Inferior/microbiología , Extremidad Inferior/patología , Vacunación Masiva , Mutación , Faringe/microbiología , Faringe/patología , Piel/microbiología , Piel/patologíaRESUMEN
During a large outbreak of Shiga toxin-producing Escherichia coli illness associated with an agricultural show in Australia, we used whole-genome sequencing to detect an IS1203v insertion in the Shiga toxin 2c subunit A gene of Shiga toxin-producing E. coli. Our study showed that clinical illness was mild, and hemolytic uremic syndrome was not detected.
Asunto(s)
Diarrea/epidemiología , Brotes de Enfermedades , Infecciones por Escherichia coli/epidemiología , Escherichia coli O157/genética , Genoma Bacteriano , Toxina Shiga I/genética , Adolescente , Adulto , Anciano , Animales , Australia/epidemiología , Niño , Preescolar , Trazado de Contacto , Diarrea/diagnóstico , Diarrea/microbiología , Infecciones por Escherichia coli/diagnóstico , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/clasificación , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/patogenicidad , Heces/microbiología , Femenino , Cabras/microbiología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Serotipificación , Índice de Severidad de la Enfermedad , Ovinos/microbiología , Toxina Shiga I/clasificación , Toxina Shiga I/aislamiento & purificación , Secuenciación Completa del GenomaRESUMEN
Salmonellosis is a significant public health problem globally. In Australia, Salmonella enterica serovar Enteritidis is one of the main causes of salmonellosis. This study reports how the implementation of routine genetic surveillance of isolates from human S. Enteritidis cases enabled identification of the likely source of an outbreak that occurred in a remote town in Far North Queensland, Australia. This study included patient, food and water samples collected during an outbreak investigation. S. Enteritidis of the novel sequence type 5438 was isolated from all seven patient samples and one bore water sample but not any of the food samples. Both whole-genome single nucleotide polymorphism (SNP) and core-genome multilocus sequence typing analysis revealed that S. Enteritidis isolated from outbreak-related patient samples and the bore water isolates clustered together with fewer than five SNP differences and ten allelic differences. This genetic relatedness informed the outbreak response team around public health interventions and no further cases were identified post-treatment of the bore water. This disease cluster was identified through the routine sequencing of S. Enteritidis performed by the state public health laboratory in an actionable time frame. Additionally, genomic surveillance captured a case with unknown epidemiological links to the affected community, ruled out a simultaneous outbreak in an adjacent state as the source and provided evidence for the likely source preventing further transmission. Therefore, this report provides compelling support for the implementation of whole-genome sequencing based genotyping methods in public health microbiology laboratories for better outbreak detection and management.
Asunto(s)
Intoxicación Alimentaria por Salmonella , Infecciones por Salmonella , Humanos , Salmonella enteritidis/genética , Queensland/epidemiología , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Intoxicación Alimentaria por Salmonella/epidemiología , Brotes de Enfermedades , Genómica , AustraliaRESUMEN
Here, this report presents two genomes of Vibrio cholerae O1 serotype Ogawa, recovered from cholera cases in Australia linked to travel to Pakistan in 2022. Their multidrug-resistant genotype represents the current activity of cholera within the seventh pandemic. One of the genome sequences was assembled using both short- and long-read sequences.
RESUMEN
Group A streptococci (GAS, Streptococcus pyogenes) and Group G streptococci (GGS, Streptococcus dysgalactiae ssp. equisimilis) adhere to and invade host cells by binding to fibronectin. The fibronectin-binding protein SfbI from GAS acts as an invasin by using a caveolae-mediated mechanism. In the present study we have identified a fibronectin-binding protein, GfbA, from GGS, which functions as an adhesin and invasin. Although there is a high degree of similarity in the C-terminal sequence of SfbI and GfbA, the invasion mechanisms are different. Unlike caveolae-mediated invasion by SfbI-expressing GAS, the GfbA-expressing GGS isolate trigger cytoskeleton rearrangements. Heterologous expression of GfbA on the surface of a commensal Streptococcus gordonii and purified recombinant protein also triggered actin rearrangements. Expression of a truncated GfbA (lacking the aromatic domain) and chimeric GfbA/SfbI protein (replacing the aromatic domain of SfbI with the GfbA aromatic domain) on S. gordonii or recombinant proteins alone showed that the aromatic domain of GfbA is responsible for different invasion mechanisms. This is the first evidence for a biological function of the aromatic domain of fibronectin-binding proteins. Furthermore, we show that streptococci invading via cytoskeleton rearrangements and intracellular trafficking along the classical endocytic pathway are less persistence than streptococci entering via caveolae.
Asunto(s)
Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Fibronectinas/metabolismo , Streptococcus/química , Streptococcus/patogenicidad , Actinas/química , Adhesinas Bacterianas/genética , Caveolas/metabolismo , Línea Celular , Citoesqueleto/química , Citoesqueleto/ultraestructura , Endocitosis , Humanos , Lisosomas/microbiología , Microscopía Electrónica , Microscopía Fluorescente , Fagocitosis , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Streptococcus/metabolismo , Streptococcus gordonii/genética , Streptococcus pyogenes/química , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidadRESUMEN
An 8-y-old, castrated male Siberian Husky dog was admitted to an emergency clinic with acute collapse and severe swelling of both forelimbs, ventral thorax, and axillary region. The clinical assessment, with laboratory tests and radiologic investigation, confirmed severe subcutaneous emphysema and multi-organ failure. The animal died while receiving emergency treatment. On postmortem examination, Clostridium perfringens was isolated from the subcutaneous fluid and the effusion from the thoracic and abdominal cavities. Relevant histopathology findings included subcutaneous emphysema and multi-organ perivascular and intravascular, intralesional myriad 0.5-3-µm gram-positive rod bacteria, with no associated inflammation. Whole-genome sequencing and phylogenetic analysis identified C. perfringens type A. Virulence genes detected included cpa (alpha toxin), cadA (v-toxin), colA (collagenase A), nagH (hyaluronidase), nanH, nanI, nanJ (sialidases), and pfoa (perfringolysin). These virulence genes have previously been reported to act synergistically with alpha toxin in C. perfringens-mediated gas gangrene.
Asunto(s)
Enfermedades de los Perros , Gangrena Gaseosa , Enfisema Subcutáneo , Animales , Clostridium perfringens/genética , Perros , Gangrena Gaseosa/microbiología , Gangrena Gaseosa/veterinaria , Masculino , Neuraminidasa/genética , Filogenia , Enfisema Subcutáneo/veterinariaRESUMEN
Increasing awareness of the relevance of Streptococcus dysgalactiae ssp. equisimilis as a human pathogen motivates the analysis of its pathomechanisms. One of the mechanisms that increases infectivity and dissemination of several streptococcal species is the recruitment and subsequent activation of host plasminogen on the streptococcal surface. This study identified GCS3 as a novel plasminogen-binding M protein of S. dysgalactiae ssp. equisimilis and revealed a difference in the mode of binding as compared to the plasminogen-binding protein PAM of S. pyogenes. In contrast to PAM, GCS3 did not bind to the kringle 1-3 region of plasminogen. Despite this difference, GCS3 exerts the same function of recruiting plasminogen to the streptococcal surface, which can be activated by streptokinase and host plasminogen activators to serve as a spreading factor. Moreover, we demonstrate a role of GCS3 in plasminogen-dependent streptococcal adherence to human pharyngeal cells (cell line Detroit 562) that indicates an additional function of the protein as an adhesin in the oral cavity.
Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Plasminógeno/metabolismo , Streptococcus/patogenicidad , Factores de Virulencia/metabolismo , Adhesinas Bacterianas/genética , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Línea Celular , Células Epiteliales/microbiología , Humanos , Streptococcus/genética , Factores de Virulencia/genéticaRESUMEN
Traditional screening for arboviruses in mosquitoes requires a priori knowledge and the utilization of appropriate assays for their detection. Mosquitoes can also provide other valuable information, including unexpected or novel arboviruses, nonarboviral pathogens ingested from hosts they feed on, and their own genetic material. Metagenomic analysis using next-generation sequencing (NGS) is a rapidly advancing technology that allows us to potentially obtain all this information from a mosquito sample without any prior knowledge of virus, host, or vector. Moreover, it has been recently demonstrated that pathogens, including arboviruses and parasites, can be detected in mosquito excreta by molecular methods. In this study, we investigated whether RNA viruses could be detected in mosquito excreta by NGS. Excreta samples were collected from Aedes vigilax and Culex annulirostris experimentally exposed to either Ross River or West Nile viruses and from field mosquitoes collected across Queensland, Australia. Total RNA was extracted from the excreta samples, reverse transcribed to cDNA, and sequenced using the Illumina NextSeq 500 platform. Bioinformatic analyses from the generated reads demonstrate that mosquito excreta provide sufficient RNA for NGS, allowing the assembly of near-full-length viral genomes. We detected Australian Anopheles totivirus, Wuhan insect virus 33, and Hubei odonate virus 5 and identified seven potentially novel viruses closely related to members of the order Picornavirales (2/7) and to previously described, but unclassified, RNA viruses (5/7). Our results suggest that metagenomic analysis of mosquito excreta has great potential for virus discovery and for unbiased arbovirus surveillance in the near future.IMPORTANCE When a mosquito feeds on a host, it ingests not only its blood meal but also an assortment of microorganisms that are present in the blood, thus acting as an environmental sampler. By using specific tests, it is possible to detect arthropod-borne viruses (arboviruses) like dengue and West Nile viruses in mosquito excreta. Here, we explored the use of next-generation sequencing (NGS) for unbiased detection of RNA viruses present in excreta from experimentally infected and field-collected mosquitoes. We have demonstrated that mosquito excreta provide a suitable template for NGS and that it is possible to recover and assemble near-full-length genomes of both arboviruses and insect-borne viruses, including potentially novel ones. These results importantly show the direct practicality of the use of mosquito excreta for NGS, which in the future could be used for virus discovery, environmental virome sampling, and arbovirus surveillance.
Asunto(s)
Aedes/virología , Culex/virología , Heces/virología , Virus de Insectos/clasificación , Viroma/genética , Animales , Arbovirus/clasificación , Arbovirus/aislamiento & purificación , Australia , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de Insectos/aislamiento & purificación , MetagenómicaRESUMEN
Complete genomes of microbial pathogens are essential for the phylogenomic analyses that increasingly underpin core public health laboratory activities. Here, we announce a BioProject (PRJNA556438) dedicated to sharing complete genomes chosen to represent a range of pathogenic bacteria with regional importance to Australia and the Southwest Pacific; enriching the catalogue of globally available complete genomes for public health while providing valuable strains to regional public health microbiology laboratories. In this first step, we present 26 complete high-quality bacterial genomes. Additionally, we describe here a framework for reconstructing complete microbial genomes and highlight some of the challenges and considerations for accurate and reproducible genome reconstruction.