Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Addict Biol ; 26(1): e12840, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31833146

RESUMEN

Repeated cocaine exposure causes long-lasting neuroadaptations that involve alterations in cellular signaling and gene expression mediated by dopamine in different brain regions, such as the striatum. Previous studies have pointed out to the dopamine D1 receptor as one major player in psychostimulants-induced behavioral, cellular, and molecular changes. However, the role of other dopamine receptors has not been fully characterized. Here we used dopamine D2 receptor knockout (D2-/- ) mice to explore the role of D2 receptor (D2R) in behavioral sensitization and its associated gene expression after acute and chronic cocaine and amphetamine administration. We also studied the impact of D2R elimination in D1R-mediated responses. We found that cocaine- and amphetamine-induced behavioral sensitization is deficient in D2-/- mice. The expression of dynorphin, primarily regulated by D1R and a marker of direct-pathway striatal neurons, is attenuated in naïve- and in cocaine- or amphetamine-treated D2-/- mice. Moreover, c-Fos expression observed in D2-/- mice was reduced in acutely but not in chronically treated animals. Interestingly, inactivation of D2R increased c-Fos expression in neurons of the striatopallidal pathway. Finally, elimination of D2R blunted the locomotor and striatal c-Fos response to the full D1 agonist SKF81297. In conclusion, D2R is critical for the development of behavioral sensitization and the associated gene expression, after cocaine administration, and it is required for the locomotor responses promoted by D1R activation.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Cocaína/farmacología , Receptores de Dopamina D2/metabolismo , Anfetaminas/farmacología , Animales , Benzazepinas , Cuerpo Estriado/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Ratones , Ratones Noqueados , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-26945022

RESUMEN

BACKGROUND: The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson's disease. Methamphetamine, a widely abused psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken to determine whether Hc-TeTx might also protect against methamphetamine-induced dopaminergic neurotoxicity and the consequent motor impairment. METHODS: For this purpose, we treated mice with a toxic regimen of methamphetamine (4mg/kg, 3 consecutive i.p. injections, 3 hours apart) followed by 3 injections of 40 ug/kg of Hc-TeTx into grastrocnemius muscle at 1, 24, and 48 hours post methamphetamine treatment. RESULTS: We found that Hc-TeTx significantly reduced the loss of dopaminergic markers tyrosine hydroxylase and dopamine transporter and the increases in silver staining (a well stablished degeneration marker) induced by methamphetamine in the striatum. Moreover, Hc-TeTx prevented the increase of neuronal nitric oxide synthase but did not affect microglia activation induced by methamphetamine. Stereological neuronal count in the substantia nigra indicated loss of tyrosine hydroxylase-positive neurons after methamphetamine that was partially prevented by Hc-TeTx. Importantly, impairment in motor behaviors post methamphetamine treatment were significantly reduced by Hc-TeTx. CONCLUSIONS: Here we demonstrate that Hc-TeTx can provide significant protection against acute methamphetamine-induced neurotoxicity and motor impairment, suggesting its therapeutic potential in methamphetamine abusers.


Asunto(s)
Locomoción/efectos de los fármacos , Metanfetamina/antagonistas & inhibidores , Metanfetamina/toxicidad , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Fragmentos de Péptidos/farmacología , Toxina Tetánica/farmacología , Animales , Temperatura Corporal/efectos de los fármacos , Recuento de Células , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Masculino , Ratones , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/prevención & control , Prueba de Desempeño de Rotación con Aceleración Constante , Tirosina 3-Monooxigenasa/metabolismo
3.
Int J Neuropsychopharmacol ; 17(2): 235-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24103647

RESUMEN

This study investigates the effect of the selective Jun NH2-terminal kinase 1/2 (JNK1/2) inhibitor, (SP600125) on the striatal dopamine nerve terminal loss and on the increased interleukin-15 (IL-15) expression and glial response induced by methamphetamine (METH). Mice were given repeated low doses of METH (4 mg/kg, i.p., three times separated by 3 h) and killed 24 h or 7 d after the last dose. SP600125 (30 mg/kg, i.p) was administered 30 min before the last METH injection. Results indicate that METH produced dopaminergic axonal neurotoxicity reflected as a marked decrease in the striatal density of tyrosine hydroxylase-immunoreactive (TH-ir) fibres and dopamine transporter-immunoreactivity (DAT-ir) 24 h after dosing. These effects were not modified by SP600125. This compound also failed to prevent the long-term loss of dopamine levels and DAT observed 7 d following METH injection. Nevertheless, SP600125 potentiated METH-induced striatal cell loss reflected by an increase in Fluoro-Jade immunostaining, cleaved capase-3 immunoreactivity and the number of terminal deoxyncleotidyl transferase-mediated dUTP nick end labelling (TUNEL) positive cells. In line with a deleterious effect of JNK1/2 inhibition, SP600125 increased the astroglial and microglial response induced by METH and interfered with drug-induced IL-15 expression. Together these data indicate that, not only does SP600125 fail to protect against the dopaminergic damage induced by METH but also, in fact, it potentiates the glial response and the non-dopaminergic striatal cell loss caused by the drug.


Asunto(s)
Antracenos/farmacología , Cuerpo Estriado/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Metanfetamina/farmacología , Neuroglía/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Cuerpo Estriado/enzimología , Sinergismo Farmacológico , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroglía/enzimología , Unión Proteica/fisiología
4.
Biology (Basel) ; 12(10)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37887070

RESUMEN

Motor dysfunction in Parkinson's disease (PD) is closely linked to the dopaminergic depletion of striatal neurons and altered synaptic plasticity at corticostriatal synapses. Dopamine receptor D1 (DRD1) stimulation is a crucial step in the formation of long-term potentiation (LTP), whereas dopamine receptor D2 (DRD2) stimulation is needed for the formation of long-term depression (LTD) in striatal spiny projection neurons (SPNs). Tropomyosin receptor kinase B (TrkB) and its ligand brain-derived neurotrophic factor (BDNF) are centrally involved in plasticity regulation at the corticostriatal synapses. DRD1 activation enhances TrkB's sensitivity for BDNF in direct pathway spiny projection neurons (dSPNs). In this study, we showed that the activation of DRD2 in cultured striatal indirect pathway spiny projection neurons (iSPNs) and cholinergic interneurons causes the retraction of TrkB from the plasma membrane. This provides an explanation for the opposing synaptic plasticity changes observed upon DRD1 or DRD2 stimulation. In addition, TrkB was found within intracellular structures in dSPNs and iSPNs from Pitx3-/- mice, a genetic model of PD with early onset dopaminergic depletion in the dorsolateral striatum (DLS). This dysregulated BDNF/TrkB signaling might contribute to the pathophysiology of direct and indirect pathway striatal projection neurons in PD.

5.
Cell Rep ; 42(6): 112575, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37252844

RESUMEN

Disturbed motor control is a hallmark of Parkinson's disease (PD). Cortico-striatal synapses play a central role in motor learning and adaption, and brain-derived neurotrophic factor (BDNF) from cortico-striatal afferents modulates their plasticity via TrkB in striatal medium spiny projection neurons (SPNs). We studied the role of dopamine in modulating the sensitivity of direct pathway SPNs (dSPNs) to BDNF in cultures of fluorescence-activated cell sorting (FACS)-enriched D1-expressing SPNs and 6-hydroxydopamine (6-OHDA)-treated rats. DRD1 activation causes enhanced TrkB translocation to the cell surface and increased sensitivity for BDNF. In contrast, dopamine depletion in cultured dSPN neurons, 6-OHDA-treated rats, and postmortem brain of patients with PD reduces BDNF responsiveness and causes formation of intracellular TrkB clusters. These clusters associate with sortilin related VPS10 domain containing receptor 2 (SORCS-2) in multivesicular-like structures, which apparently protects them from lysosomal degradation. Thus, impaired TrkB processing might contribute to disturbed motor function in PD.


Asunto(s)
Enfermedad de Parkinson , Receptores de Dopamina D1 , Animales , Humanos , Ratas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas Espinosas Medianas , Oxidopamina , Enfermedad de Parkinson/metabolismo , Receptor trkB/metabolismo , Receptores de Dopamina D1/metabolismo
6.
Glia ; 59(12): 1850-63, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21882243

RESUMEN

Oxidative stress that correlates with damage to nigrostriatal dopaminergic neurons and reactive gliosis in the basal ganglia is a hallmark of methamphetamine (METH) toxicity. In this study, we analyzed the protective role of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2), a master regulator of redox homeostasis, in METH-induced neurotoxicity. We found that Nrf2 deficiency exacerbated METH-induced damage to dopamine neurons, shown by an increase in loss of tyrosine hydroxylase (TH)- and dopamine transporter (DAT)-containing fibers in striatum. Consistent with these effects, Nrf2 deficiency potentiated glial activation, indicated by increased striatal expression of markers for microglia (Mac-1 and Iba-1) and astroglia (GFAP) one day after METH administration. At the same time, Nrf2 inactivation dramatically potentiated the increase in TNFα mRNA and IL-15 protein expression in GFAP+ cells in the striatum. In sharp contrast to the potentiation of striatal damage, Nrf2 deficiency did not affect METH-induced dopaminergic neuron death or expression of glial markers or proinflammatory molecules in the substantia nigra. This study uncovers a new role for Nrf2 in protection against METH-induced inflammatory and oxidative stress and striatal degeneration.


Asunto(s)
Axones/patología , Cuerpo Estriado/patología , Dopamina/fisiología , Gliosis/patología , Metanfetamina/toxicidad , Factor 2 Relacionado con NF-E2/deficiencia , Degeneración Walleriana/patología , Inhibidores de Captación Adrenérgica/antagonistas & inhibidores , Inhibidores de Captación Adrenérgica/toxicidad , Animales , Axones/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Gliosis/inducido químicamente , Gliosis/fisiopatología , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/toxicidad , Masculino , Metanfetamina/antagonistas & inhibidores , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Degeneración Walleriana/inducido químicamente , Degeneración Walleriana/fisiopatología
7.
Neurobiol Dis ; 42(3): 391-403, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21303698

RESUMEN

Methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA), amphetamine derivatives widely used as recreational drugs, induce similar neurotoxic effects in mice, including a marked loss of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the striatum. Although the role of dopamine in these neurotoxic effects is well established and pharmacological studies suggest involvement of a dopamine D2-like receptor, the specific dopamine receptor subtype involved has not been determined. In this study, we used dopamine D2 receptor knock-out mice (D2R(-/-)) to determine whether D2R is involved in METH- and MDMA-induced hyperthermia and neurotoxicity. In wild type animals, both drugs induced marked hyperthermia, decreased striatal dopamine content and TH- and DAT-immunoreactivity and increased striatal GFAP and Mac-1 expression as well as iNOS and interleukin 15 at 1 and 7days after drug exposure. They also caused dopaminergic cell loss in the SNpc. Inactivation of D2R blocked all these effects. Remarkably, D2R inactivation prevented METH-induced loss of dopaminergic neurons in the SNpc. In addition, striatal dopamine overflow, measured by fast scan cyclic voltammetry in the presence of METH, was significantly reduced in D2R(-/-) mice. Pre-treatment with reserpine indicated that the neuroprotective effect of D2R inactivation cannot be explained solely by its ability to prevent METH-induced hyperthermia: reserpine lowered body temperature in both genotypes, and potentiated METH toxicity in WT, but not D2R(-/-) mice. Our results demonstrate that the D2R is necessary for METH and MDMA neurotoxicity and that the neuroprotective effect of D2R inactivation is independent of its effect on body temperature.


Asunto(s)
Estimulantes del Sistema Nervioso Central/toxicidad , Dopamina/metabolismo , Metanfetamina/toxicidad , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Receptores de Dopamina D2/metabolismo , Análisis de Varianza , Animales , Temperatura Corporal/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inmunohistoquímica , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/genética , Receptores de Dopamina D2/genética , Tirosina 3-Monooxigenasa/metabolismo
8.
Psychopharmacology (Berl) ; 238(2): 551-557, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33410990

RESUMEN

RATIONALE: The emergence of the consumption of highly potent synthetic cannabinoid receptor agonists (spice drugs) that produce important neurological symptoms has prompted the research on the consequences of acute and chronic use of these new psychoactive substances. Most studies on cannabinoid dependence have been performed in male animals, and there is a need of studies using female subjects. OBJECTIVES: In the present study, we evaluated only in female animals the role of dopamine D1 receptors in the behavioral responses induced by acute and repeated stimulation of cannabinoid CB1 receptors, including the development of physical dependence, since cannabinoid CB1 receptors are co-localized with dopamine D1 receptors on GABAergic neurons projecting to the substantia nigra. METHODS: To this end, female dopamine D1 receptor-deficient mice and wild-type littermates were treated with HU-210, a potent synthetic cannabinoid agonist. RESULTS: Mutant mice displayed an enhanced response to acute motor and hypothermic effects to HU-210 when compared with wild-type females. The administration of SR141716A precipitated behavioral signs of withdrawal in mice treated subchronically with HU-210. Severity of cannabinoid withdrawal syndrome was potentiated in dopamine D1-deficient female mice. Indeed, 4 of 6 abstinence signs were increased in mutant mice. CONCLUSIONS: These results support for a role of dopamine D1 receptors in the acute, chronic, and withdrawal actions of spice drugs.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Dronabinol/análogos & derivados , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptores de Dopamina D1/genética , Rimonabant/farmacología , Síndrome de Abstinencia a Sustancias/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Dronabinol/farmacología , Femenino , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Receptor Cannabinoide CB1/agonistas , Receptores de Dopamina D2/metabolismo , Síndrome de Abstinencia a Sustancias/psicología
9.
Front Pharmacol ; 11: 356, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390826

RESUMEN

Alpha-synuclein (α-Syn) is a key protein involved in Parkinson's disease (PD) pathology. PD is characterized by the loss of dopaminergic neuronal cells in the substantia nigra pars compacta and the abnormal accumulation and aggregation of α-Syn in the form of Lewy bodies and Lewy neurites. More precisely, the aggregation of α-Syn is associated with the dysfunctionality and degeneration of neurons in PD. Moreover, mutations in the SNCA gene, which encodes α-Syn, cause familial forms of PD and are the basis of sporadic PD risk. Given the role of the α-Syn protein in the pathology of PD, animal models that reflect the dopaminergic neuronal loss and the widespread and progressive formation of α-Syn aggregates in different areas of the brain constitute a valuable tool. Indeed, animal models of PD are important for understanding the molecular mechanisms of the disease and might contribute to the development and validation of new therapies. In the absence of animal models that faithfully reproduce human PD, in recent years, numerous animal models of PD based on α-Syn have been generated. In this review, we summarize the main features of the α-Syn pre-formed fibrils (PFFs) model and recombinant adeno-associated virus vector (rAAV) mediated α-Syn overexpression models, providing a detailed comparative analysis of both models. Here, we discuss how each model has contributed to our understanding of PD pathology and the advantages and weakness of each of them. SIGNIFICANCE: Here, we show that injection of α-Syn PFFs and overexpression of α-Syn mediated by rAAV lead to a different pattern of PD pathology in rodents. First, α-Syn PFFs models trigger the Lewy body-like inclusions formation in brain regions directly interconnected with the injection site, suggesting that there is an inter-neuronal transmission of the α-Syn pathology. In contrast, rAAV-mediated α-Syn overexpression in the brain limits the α-Syn aggregates within the transduced neurons. Second, phosphorylated α-Syn inclusions obtained with rAAV are predominantly nuclear with a punctate appearance that becomes diffuse along the neuronal fibers, whereas α-Syn PFFs models lead to the formation of cytoplasmic aggregates of phosphorylated α-Syn reminiscent of Lewy bodies and Lewy neurites.

10.
Cereb Cortex ; 18(1): 1-12, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17395606

RESUMEN

Recent evidence suggests that glutamatergic and dopaminergic afferents must be activated to induce persistent long-term potentiation (LTP) in the hippocampus. Whereas extensive evidence supports the role of glutamate receptors in long-lasting synaptic plasticity and spatial learning and memory, there is less evidence regarding the role of dopamine receptors in these processes. Here, we used dopamine D(1) receptor knockout (D(1)R(-/-)) mice to explore the role of D(1)R in hippocampal LTP and its associated gene expression. We show that the magnitude of early and late phases of LTP (E-LTP and L-LTP) was markedly reduced in hippocampal slices from D(1)R(-/-) mice compared with wild-type mice. SCH23390, a D(1)/D(5)R antagonist, did not further reduce L-LTP in D(1)R(-/-) mice, suggesting that D(5)Rs are not involved. D(1)R(-/-) mice also showed a significant reduction of D(1)R-induced potentiation of N-Methyl-D-aspartic acid-mediated currents, via protein kinase activated by cyclic adenosine 3',5'-monophosphate activation. Finally, LTP-induced expression of the immediate early genes zif268 and arc in the hippocampal CA1 area was abolished in D(1)R(-/-) mice, and these mice showed impaired learning. These results indicate that D(1)R but not D(5)R are critical for hippocampal LTP and for the induction of Zif268 and Arc, proteins required for the transition from E-LTP to L-LTP and for memory consolidation in mammals.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Proteínas del Tejido Nervioso/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/metabolismo , Animales , Aprendizaje/fisiología , Ratones , Percepción Espacial/fisiología
11.
J Neurochem ; 107(4): 1102-12, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18823368

RESUMEN

Acute administration of repeated doses of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) dramatically reduces striatal dopamine (DA) content, tyrosine hydroxylase (TH), and DA transporter-immunoreactivity in mice. In this study, we show for the first time the spatiotemporal pattern of dopaminergic damage and related molecular events produced by MDMA administration in mice. Our results include the novel finding that MDMA produces a significant decrease in the number of TH-immunoreactive neurons in the substantia nigra (SN). This decrease appears 1 day after injection, remains stable for at least 30 days, and is accompanied by a dose-dependent long-lasting decrease in TH- and DA transporter-immunoreactivity in the striatum, which peaked 1 day after treatment and persisted for at least 30 days, however, some recovery was evident from day 3 onwards, evidencing sprouting of TH fibers. No change is observed in the NAc indicating that MDMA causes selective destruction of DA-containing neurons in the nigrostriatal pathway, sparing the mesolimbic pathway. The expression of Mac-1 increased 1 day after MDMA treatment and glial fibrillary acidic protein increased 3 days post-treatment in the striatum and SN but not in the NAc, in strict anatomical correlation with dopaminergic damage. These data provide the first evidence that MDMA causes persistent loss of dopaminergic cell bodies in the SN.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , N-Metil-3,4-metilenodioxianfetamina/administración & dosificación , Neurotoxinas/administración & dosificación , Sustancia Negra/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Cuerpo Estriado/citología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Relación Dosis-Respuesta a Droga , Fiebre/inducido químicamente , Proteína Ácida Fibrilar de la Glía/metabolismo , Antígeno de Macrófago-1/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico Sintasa/metabolismo , Técnicas Estereotáxicas , Sustancia Negra/citología , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
12.
Neurotox Res ; 34(3): 627-639, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29934756

RESUMEN

Methamphetamine (METH), an amphetamine derivate, may increase the risk of developing Parkinson's disease (PD). Human and animal studies have shown that METH produces persistent dopaminergic neurotoxicity in the nigrostriatal pathway, despite initial partial recovery. To determine the processes leading to early compensation, we studied the detailed morphology and distribution of tyrosine hydroxylase immunoreactive fibers (TH-ir) classified by their thickness (types I-IV) before and after METH. Applying three established neurotoxic regimens of METH: single high dose (1 × 30 mg/kg), multiple lower doses (3 × 5 mg/kg) or (3 × 10 mg/kg), we show that METH primarily damages type I fibers (the thinner ones), and to a much lesser extend types II-IV fibers including sterile axons. The striatal TH terminal partial recovery process, consisting of a progressive regrowth increases in types II, III, and IV fibers, demonstrated by co-localization of GAP-43, a sprouting marker, was observed 3 days post-METH treatment. In addition, we demonstrate the presence of growth-cone-like TH-ir structures, indicative of new terminal generation as well as improvement in motor functions after 3 days. A temporal relationship was observed between decreases in TH-expression and increases in silver staining, a marker of degeneration. Striatal regeneration was associated with an increase in astroglia and decrease in microglia expression, suggesting a possible role for the neuroimmune system in regenerative processes. Identification of regenerative compensatory mechanisms in response to neurotoxic agents could point to novel mechanisms in countering the neurotoxicity and/or enhancing the regenerative processes.


Asunto(s)
Estimulantes del Sistema Nervioso Central/toxicidad , Cuerpo Estriado/fisiopatología , Dopamina/metabolismo , Metanfetamina/toxicidad , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Animales , Proteínas de Unión al Calcio , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/ultraestructura , Modelos Animales de Enfermedad , Proteína GAP-43/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/patología , Terminales Presinápticos/ultraestructura , Trastornos Psicomotores/etiología , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Tinción con Nitrato de Plata , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
13.
Prog Neurobiol ; 155: 149-170, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26455459

RESUMEN

Amphetamine-related drugs, such as 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH), are popular recreational psychostimulants. Several preclinical studies have demonstrated that, besides having the potential for abuse, amphetamine-related drugs may also elicit neurotoxic and neuroinflammatory effects. The neurotoxic potentials of MDMA and METH to dopaminergic and serotonergic neurons have been clearly demonstrated in both rodents and non-human primates. This review summarizes the species-specific cellular and molecular mechanisms involved in MDMA and METH-mediated neurotoxic and neuroinflammatory effects, along with the most important behavioral changes elicited by these substances in experimental animals and humans. Emphasis is placed on the neuropsychological and neurological consequences associated with the neuronal damage. Moreover, we point out the gap in our knowledge and the need for developing appropriate therapeutic strategies to manage the neurological problems associated with amphetamine-related drug abuse.


Asunto(s)
Encéfalo/efectos de los fármacos , Metanfetamina/efectos adversos , N-Metil-3,4-metilenodioxianfetamina/efectos adversos , Animales , Humanos , Síndromes de Neurotoxicidad/patología
14.
Psychopharmacology (Berl) ; 185(2): 160-8, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16470403

RESUMEN

RATIONALE: Caffeine and other methylxanthines induce behavioral activation and anxiety responses in mice via antagonist action at A2A adenosine receptors. When combined with the opioid antagonist naloxone, methylxanthines produce a characteristic quasi-morphine withdrawal syndrome (QMWS) in opiate-naive animals. OBJECTIVES: The aim of this study was to establish the role of A2A receptors in the quasi-morphine withdrawal syndrome induced by co-administration of caffeine and naloxone and in the behavioral effects of caffeine. METHODS: We have used A2A receptor knockout (A(2A)R(-/-)) mice in comparison with their wild-type and heterozygous littermates to measure locomotor activity in the open field and withdrawal symptoms induced by caffeine and naloxone. Naïve wild-type and knockout mice were also examined for enkephalin and dynorphin mRNA expression by in situ hybridization and for mu-opiate receptor by ligand binding autoradiography to check for possible opiate receptor changes induced by A2A receptor inactivation. RESULTS: Caffeine increases locomotion and anxiety in wild-type animals, but it has no psychomotor effects in A(2A)R(-/-) mice. Co-administration of caffeine (20 mg/kg) and naloxone (2 mg/kg) resulted in a severe quasi-morphine withdrawal syndrome in wild-type mice that was almost completely abolished in A(2A)R(-/-) mice. Heterozygous animals exhibited a 40% reduction in withdrawal symptoms, suggesting that there is no genetic/developmental compensation for the inactivation of one of the A(2A)R alleles. A(2A)R(-/-) and wild-type mice have similar levels of striatal mu-opioid receptors, thus the effect is not due to altered opioid receptor expression. CONCLUSIONS: Our results demonstrate that A2A receptors are required for the induction of quasi-morphine withdrawal syndrome by co-administration of caffeine and naloxone and implicate striatal A2A receptors and mu-opiate receptors in tonic inhibition of motor activity in the striatum.


Asunto(s)
Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Morfina/efectos adversos , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Receptor de Adenosina A2A/fisiología , Síndrome de Abstinencia a Sustancias/metabolismo , Antagonistas del Receptor de Adenosina A2 , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Relación Dosis-Respuesta a Droga , Dinorfinas/biosíntesis , Encefalinas/biosíntesis , Conducta Exploratoria/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , ARN Mensajero/biosíntesis , Receptor de Adenosina A2A/genética , Receptores Opioides mu/biosíntesis , Síndrome de Abstinencia a Sustancias/etiología , Síndrome de Abstinencia a Sustancias/fisiopatología
15.
Neurotox Res ; 27(3): 209-16, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25492248

RESUMEN

The indusium griseum (IG), a thin layer of gray matter in contact with the dorsal surface of the corpus callosum and the lateral gray matter of the cingulate gyrus, has a common origin with hippocampus and shows similar organization with the dentate gyrus. Although some studies have examined the effect of methamphetamine (METH), an addictive and an illegal psychostimulant on this structure, quantitative effects and possible mechanism of actions of METH in this area are lacking. By applying two different protocols of equivalent METH administration (i.e., a high dose of 1 × 30 mg/kg and a lower and repeated injection dose of 3 × 10 mg/kg) and using a specific silver staining method in mice, we demonstrate that this drug produces degeneration in IG with both protocols, without affecting the dopaminergic system. Moreover, we observed quantitative increases in labeling of GFAP and Iba-1, markers of astro- and microgliosis, respectively, which suggest astrogliosis and microgliosis. Thus, our study provides morphological and semi-quantitative evidence that METH induces neurodegeneration in IG and that this damage is associated with astrogliosis and microgliosis in this area.


Asunto(s)
Gliosis/inducido químicamente , Lóbulo Límbico/efectos de los fármacos , Lóbulo Límbico/patología , Metanfetamina/toxicidad , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Masculino , Metanfetamina/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología
16.
Neuropsychopharmacology ; 39(5): 1066-80, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24169803

RESUMEN

Methamphetamine is a widely abused illicit drug. Recent epidemiological studies showed that methamphetamine increases the risk for developing Parkinson's disease (PD) in agreement with animal studies showing dopaminergic neurotoxicity. We examined the effect of repeated low and medium doses vs single high dose of methamphetamine on degeneration of dopaminergic terminals and cell bodies. Mice were given methamphetamine in one of the following paradigms: three injections of 5 or 10 mg/kg at 3 h intervals or a single 30 mg/kg injection. The integrity of dopaminergic fibers and cell bodies was assessed at different time points after methamphetamine by tyrosine hydroxylase immunohistochemistry and silver staining. The 3 × 10 protocol yielded the highest loss of striatal dopaminergic terminals, followed by the 3 × 5 and 1 × 30. Some degenerating axons could be followed from the striatum to the substantia nigra pars compacta (SNpc). All protocols induced similar significant degeneration of dopaminergic neurons in the SNpc, evidenced by amino-cupric-silver-stained dopaminergic neurons. These neurons died by necrosis and apoptosis. Methamphetamine also killed striatal neurons. By using D1-Tmt/D2-GFP BAC transgenic mice, we observed that degenerating striatal neurons were equally distributed between direct and indirect medium spiny neurons. Despite the reduced number of dopaminergic neurons in the SNpc at 30 days after treatment, there was a partial time-dependent recovery of dopamine terminals beginning 3 days after treatment. Locomotor activity and motor coordination were robustly decreased 1-3 days after treatment, but recovered at later times along with dopaminergic terminals. These data provide direct evidence that methamphetamine causes long-lasting loss/degeneration of dopaminergic cell bodies in the SNpc, along with destruction of dopaminergic terminals in the striatum.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dopaminérgicos/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Metanfetamina/farmacología , Degeneración Nerviosa/inducido químicamente , Sustancia Negra/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Relación Dosis-Respuesta a Droga , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Necrosis/inducido químicamente , Necrosis/metabolismo , Necrosis/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Tinción con Nitrato de Plata , Sustancia Negra/metabolismo , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/metabolismo
17.
Neurobiol Aging ; 35(7): 1726-38, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24529758

RESUMEN

It is not known whether the aging-related decrease in dopaminergic function leads to the aging-related higher vulnerability of dopaminergic neurons and risk for Parkinson's disease. The renin-angiotensin system (RAS) plays a major role in the inflammatory response, neuronal oxidative stress, and dopaminergic vulnerability via type 1 (AT1) receptors. In the present study, we observed a counterregulatory interaction between dopamine and angiotensin receptors. We observed overexpression of AT1 receptors in the striatum and substantia nigra of young adult dopamine D1 and D2 receptor-deficient mice and young dopamine-depleted rats, together with compensatory overexpression of AT2 receptors or compensatory downregulation of angiotensinogen and/or angiotensin. In aged rats, we observed downregulation of dopamine and dopamine receptors and overexpression of AT1 receptors in aged rats, without compensatory changes observed in young animals. L-Dopa therapy inhibited RAS overactivity in young dopamine-depleted rats, but was ineffective in aged rats. The results suggest that dopamine may play an important role in modulating oxidative stress and inflammation in the substantia nigra and striatum via the RAS, which is impaired by aging.


Asunto(s)
Envejecimiento/genética , Dopamina/fisiología , Receptor de Angiotensina Tipo 1/fisiología , Envejecimiento/metabolismo , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Dopamina/genética , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Regulación hacia Abajo , Expresión Génica , Inflamación/genética , Masculino , Ratones , Estrés Oxidativo/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Sistema Renina-Angiotensina/fisiología , Riesgo , Sustancia Negra/metabolismo , Sustancia Negra/patología
18.
Parkinsons Dis ; 2013: 308052, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23476887

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder predominantly affecting the elderly. The aetiology of the disease is not known, but age and environmental factors play an important role. Although more than a dozen gene mutations associated with familial forms of Parkinson's disease have been described, fewer than 10% of all cases can be explained by genetic abnormalities. The molecular basis of Parkinson's disease is the loss of dopamine in the basal ganglia (caudate/putamen) due to the degeneration of dopaminergic neurons in the substantia nigra, which leads to the motor impairment characteristic of the disease. Methamphetamine is the second most widely used illicit drug in the world. In rodents, methamphetamine exposure damages dopaminergic neurons in the substantia nigra, resulting in a significant loss of dopamine in the striatum. Biochemical and neuroimaging studies in human methamphetamine users have shown decreased levels of dopamine and dopamine transporter as well as prominent microglial activation in the striatum and other areas of the brain, changes similar to those observed in PD patients. Consistent with these similarities, recent epidemiological studies have shown that methamphetamine users are almost twice as likely as non-users to develop PD, despite the fact that methamphetamine abuse and PD have distinct symptomatic profiles.

19.
Psychopharmacology (Berl) ; 230(1): 125-35, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23681166

RESUMEN

RATIONALE: The drugs of abuse 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy") and cocaine both increase the generation of free radicals, and in the case of MDMA, this increase in oxidative stress is involved in the dopaminergic neurotoxicity produced by the drug in mice. Oxidative stress processes are also involved in the pathogenesis of several neurodegenerative diseases. OBJECTIVES: We aimed to determine the consequences of the combined administration of MDMA and cocaine on oxidative stress and dopaminergic neurotoxicity. METHODS: Mice received MDMA (20 mg/kg, i.p.; two doses separated by 3 h) followed by cocaine 1, 3, 6, or 24 h after the second MDMA dose. Mice were killed between 1 h and 7 days after cocaine injection. RESULTS: MDMA decreased dopamine transporter density and dopamine concentration 7 days later. Cocaine did not alter this neurotoxicity. MDMA produced an increase in the concentration of 2,3-dihydroxybenzoic acid in striatal microdialysis samples and an increase in lipid peroxidation in the striatum which were potentiated by cocaine. MDMA and cocaine given together also increased nitrate and 3-nitrotyrosine levels compared with either drug given alone. On the other hand, MDMA increased superoxide dismutase activity and decreased catalase activity, changes which were prevented by cocaine administration. In addition, cocaine administration produced an increase in glutathione peroxidase (GPx) activity in both saline-treated and MDMA-treated mice. CONCLUSIONS: Cocaine potentiates MDMA-induced oxidative stress but does not produce an increase in the neurotoxicity produced by MDMA, and this lack of potentiation may involve an increase in GPx activity.


Asunto(s)
Cocaína/toxicidad , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Síndromes de Neurotoxicidad/etiología , Estrés Oxidativo/efectos de los fármacos , Animales , Cocaína/administración & dosificación , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Radicales Libres/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Microdiálisis , N-Metil-3,4-metilenodioxianfetamina/administración & dosificación , Síndromes de Neurotoxicidad/fisiopatología , Factores de Tiempo
20.
Neurotox Res ; 18(1): 48-58, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19760475

RESUMEN

Methamphetamine (METH), a commonly abused psychostimulant, causes dopamine neurotoxicity in humans, rodents, and nonhuman primates. This study examined the selective neuroanatomical pattern of dopaminergic neurotoxicity induced by METH in the mouse striatum. We examined the effect of METH on tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunoreactivity in the different compartments of the striatum and in the nucleus accumbens. The levels of dopamine and its metabolites, 3,4-dihidroxyphenylacetic acid and homovanillic acid, as well as serotonin (5-HT) and its metabolite, 5-hydroxyindolacetic acid, were also quantified in the striatum. Mice were given three injections of METH (4 mg/kg, i.p.) at 3 h intervals and sacrificed 7 days later. This repeated METH injection induced a hyperthermic response and a decrease in striatal concentrations of dopamine and its metabolites without affecting 5-HT concentrations. In addition, the drug caused a reduction in TH- and DAT-immunoreactivity when compared to saline-treated animals. Interestingly, there was a significantly greater loss of TH- and DAT-immunoreactivity in striosomes than in the matrix. The predominant loss of dopaminergic terminals in the striosomes occurred along the rostrocaudal axis of the striatum. In contrast, METH did not decrease TH- or DAT-immunoreactivity in the nucleus accumbens. These results provide the first evidence that compartments of the mouse striatum, striosomes and matrix, and mesolimbic and nigrostriatal pathways have different vulnerability to METH. This pattern is similar to that observed with other neurotoxins such as MPTP, the most widely used model of Parkinson's disease, in early Huntington's disease and hypoxic/ischemic injury, suggesting that these conditions might share mechanisms of neurotoxicity.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dopaminérgicos/toxicidad , Dopamina/metabolismo , Metanfetamina/toxicidad , Sustancia Negra/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Animales , Cuerpo Estriado/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Esquema de Medicación , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Homovanílico/metabolismo , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Sustancia Negra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA