Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612514

RESUMEN

Alzheimer's disease (AD) is the fifth leading cause of death among adults aged 65 and older, yet the onset and progression of the disease is poorly understood. What is known is that the presence of amyloid, particularly polymerized Aß42, defines when people are on the AD continuum. Interestingly, as AD progresses, less Aß42 is detectable in the plasma, a phenomenon thought to result from Aß becoming more aggregated in the brain and less Aß42 and Aß40 being transported from the brain to the plasma via the CSF. We propose that extracellular vesicles (EVs) play a role in this transport. EVs are found in bodily fluids such as blood, urine, and cerebrospinal fluid and carry diverse "cargos" of bioactive molecules (e.g., proteins, nucleic acids, lipids, metabolites) that dynamically reflect changes in the cells from which they are secreted. While Aß42 and Aß40 have been reported to be present in EVs, it is not known whether this interaction is specific for these peptides and thus whether amyloid-carrying EVs play a role in AD and/or serve as brain-specific biomarkers of the AD process. To determine if there is a specific interaction between Aß and EVs, we used isothermal titration calorimetry (ITC) and discovered that Aß42 and Aß40 bind to EVs in a manner that is sequence specific, saturable, and endothermic. In addition, Aß incubation with EVs overnight yielded larger amounts of bound Aß peptide that was fibrillar in structure. These findings point to a specific amyloid-EV interaction, a potential role for EVs in the transport of amyloid from the brain to the blood, and a role for this amyloid pool in the AD process.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Adulto , Humanos , Péptidos , Proteínas Amiloidogénicas , Plasma
2.
Stroke ; 54(3): e52-e57, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36727508

RESUMEN

BACKGROUND: Neuroinflammation is ubiquitous in acute stroke and worsens outcome. However, the precise timing of the inflammatory response is unknown, hindering the design of acute anti-inflammatory therapeutic interventions. We sought to identify the onset of the neuroinflammatory cascade using a mobile stroke unit. METHODS: The study is a proof-of-concept, cohort investigation of ultra-early blood- and extracellular vesicle-derived markers of neuroinflammation and outcome in acute stroke. Blood was obtained, prehospital, on an mobile stroke unit. Outcomes were biomarker concentrations, modified Rankin Scale score, and National Institutes of Health Stroke Scale score. RESULTS: Forty-one adults were analyzed, including 15 patients treated on the mobile stroke unit between August 2021 and April 2022, and 26 healthy controls to establish biomarker reference levels. Median patient age was 74 (range, 36-97) years, 60% were female, and 80% White. Ten (67%) were diagnosed as stroke, with 8 (53%) confirmed and 2 likely transient ischemic attack or stroke averted by thrombolysis; 5 were stroke mimics. For strokes, median initial National Institutes of Health Stroke Scale score was 11 (range, 4-19) and 6 (75%) received tPA (tissue-type plasminogen activator). Blood was obtained a median of 58 (range, 36-133) minutes after symptom onset. Within 36 minutes after stroke, plasma IL-6 (interleukin-6), neurofilament light chain, UCH-L1 (ubiquitin C-terminal hydrolase L1), and GFAP (glial fibrillary acidic protein) were elevated by as much as 10 times normal. In EVs, MMP-9 (matrix metalloproteinase-9), CXCL4 (chemokine (C-X-C motif) ligand 4), CRP (C-reactive protein), IL-6, OPN (osteopontin), and PECAM1 (platelet and endothelial cell adhesion molecule 1) were elevated. Inflammatory markers increased rapidly in the first 2 hours and continued rising for 24 hours. CONCLUSIONS: The neuroinflammatory cascade was found to be activated within 36 to 133 minutes after stroke and progresses rapidly. This is earlier than observed previously in humans and suggests injury from neuroinflammation occurs faster than had been surmised. These findings could inform development of acute immunomodulatory stroke therapies and lead to new diagnostic tools and improved outcomes.


Asunto(s)
Isquemia Encefálica , Ataque Isquémico Transitorio , Accidente Cerebrovascular , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Isquemia Encefálica/tratamiento farmacológico , Interleucina-6 , Ataque Isquémico Transitorio/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular/terapia , Activador de Tejido Plasminógeno/uso terapéutico , Resultado del Tratamiento
3.
Clin Immunol ; 256: 109801, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37816415

RESUMEN

We recently reported that multiple sclerosis (MS) plasma contains IgG aggregates and induces complement-dependent neuronal cytotoxicity (Zhou et al., 2023). Using ELISA, we report herein that plasma IgG levels in the aggregates can be used as biomarkers for MS. We enriched the IgG aggregates from samples of two cohorts (190 MS and 160 controls) by collecting flow-through after plasma binding to Protein A followed by detection of IgG subclass. We show that there are significantly higher levels of IgG1, IgG3, and total IgG antibodies in MS IgG aggregates, with an AUC >90%; higher levels of IgG1 distinguish secondary progressive MS from relapsing-remitting MS (AUC = 91%). Significantly, we provided the biological rationale for MS plasma IgG biomarkers by demonstrating the strong correlation between IgG antibodies and IgG aggregate-induced neuronal cytotoxicity. These non-invasive, simple IgG-based blood ELISA assays can be adapted into clinical practice for diagnosing MS and SPMS and monitoring treatment responses.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Inmunoglobulina G , Biomarcadores , Ensayo de Inmunoadsorción Enzimática , Esclerosis Múltiple Crónica Progresiva/metabolismo
4.
Annu Rev Genomics Hum Genet ; 20: 331-357, 2019 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30978305

RESUMEN

High-grade gliomas, particularly glioblastomas (grade IV), are devastating diseases with dismal prognoses; afflicted patients seldom live longer than 15 months, and their quality of life suffers immensely. Our current standard-of-care therapy has remained essentially unchanged for almost 15 years, with little new therapeutic progress. We desperately need a better biologic understanding of these complicated tumors in a complicated organ. One area of rejuvenated study relates to extracellular vesicles (EVs)-membrane-enclosed nano- or microsized particles that originate from the endosomal system or are shed from the plasma membrane. EVs contribute to tumor heterogeneity (including the maintenance of glioma stem cells or their differentiation), the impacts of hypoxia (angiogenesis and coagulopathies), interactions amid the tumor microenvironment (concerning the survival of astrocytes, neurons, endothelial cells, blood vessels, the blood-brain barrier, and the ensuing inflammation), and influences on the immune system (both stimulatory and suppressive). This article reviews glioma EVs and the ways that EVs manifest themselves as autocrine, paracrine, and endocrine factors in proximal and distal intra- and intercellular communications. The reader should note that there is much controversy, and indeed confusion, in the field over the exact roles for EVs in many biological processes, and we will engage some of these difficulties herein.


Asunto(s)
Neoplasias Encefálicas/fisiopatología , Vesículas Extracelulares/fisiología , Glioma/fisiopatología , Microambiente Tumoral , Animales , Astrocitos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Glioma/inmunología , Glioma/metabolismo , Humanos , Sistema Inmunológico , Inflamación
5.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806205

RESUMEN

WHO Grade 4 IDH-wild type astrocytoma (GBM) is the deadliest brain tumor with a poor prognosis. Meningioma (MMA) is a more common "benign" central nervous system tumor but with significant recurrence rates. There is an urgent need for brain tumor biomarkers for early diagnosis and effective treatment options. Extracellular vesicles (EVs) are tiny membrane-enclosed vesicles that play essential functions in cell-to-cell communications among tumor cells. We aimed to identify epitopes of brain tumor EVs by phage peptide libraries. EVs from GBM plasma, MMA plasma, or brain tumor cell lines were used to screen phage-displayed random peptide libraries to identify high-affinity peptides. We purified EVs from three GBM plasma pools (23 patients), one MMA pool (10 patients), and four brain tumor cell lines. We identified a total of 21 high-affinity phage peptides (12 unique) specific to brain tumor EVs. The peptides shared high sequence homologies among those selected by the same EVs. Dose-response ELISA demonstrated that phage peptides were specific to brain tumor EVs compared to controls. Peptide affinity purification identified unique brain tumor EV subpopulations. Significantly, GBM EV peptides inhibit brain tumor EV-induced complement-dependent cytotoxicity (necrosis) in neurons. We conclude that phage display technology could identify specific peptides to isolate and characterize tumor EVs.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Humanos , Neuronas/metabolismo , Péptidos/metabolismo , Péptidos/farmacología
6.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34360613

RESUMEN

BACKGROUND: A major contributor to disability after hemorrhagic stroke is secondary brain damage induced by the inflammatory response. Following stroke, global increases in numerous cytokines-many associated with worse outcomes-occur within the brain, cerebrospinal fluid, and peripheral blood. Extracellular vesicles (EVs) may traffic inflammatory cytokines from damaged tissue within the brain, as well as peripheral sources, across the blood-brain barrier, and they may be a critical component of post-stroke neuroinflammatory signaling. METHODS: We performed a comprehensive analysis of cytokine concentrations bound to plasma EV surfaces and/or sequestered within the vesicles themselves. These concentrations were correlated to patient acute neurological condition by the Glasgow Coma Scale (GCS) and to chronic, long-term outcome via the Glasgow Outcome Scale-Extended (GOS-E). RESULTS: Pro-inflammatory cytokines detected from plasma EVs were correlated to worse outcomes in hemorrhagic stroke patients. Anti-inflammatory cytokines detected within EVs were still correlated to poor outcomes despite their putative neuroprotective properties. Inflammatory cytokines macrophage-derived chemokine (MDC/CCL2), colony stimulating factor 1 (CSF1), interleukin 7 (IL7), and monokine induced by gamma interferon (MIG/CXCL9) were significantly correlated to both negative GCS and GOS-E when bound to plasma EV membranes. CONCLUSIONS: These findings correlate plasma-derived EV cytokine content with detrimental outcomes after stroke, highlighting the potential for EVs to provide cytokines with a means of long-range delivery of inflammatory signals that perpetuate neuroinflammation after stroke, thus hindering recovery.


Asunto(s)
Lesiones Encefálicas/diagnóstico , Citocinas/sangre , Vesículas Extracelulares/metabolismo , Accidente Cerebrovascular/complicaciones , Lesiones Encefálicas/sangre , Lesiones Encefálicas/etiología , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
7.
J Neurovirol ; 26(3): 330-337, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32125664

RESUMEN

Varicella-zoster virus (VZV) is a pathogenic human herpesvirus that causes varicella (chickenpox) as a primary infection following which it becomes latent in ganglionic neurons. Following viral reactivation many years later VZV causes herpes zoster (shingles) as well as a variety of other neurological syndromes. The molecular mechanisms of the conversion of the virus from a lytic to a latent state in ganglia are not well understood. In order to gain insights into the neuron-virus interaction, we studied virus-induced apoptosis in cultures of both highly pure terminally differentiated human neurons and human fetal lung fibroblasts (HFL). It was found that (a) VZV DNA did not accumulate in infected human neurons; (b) VZV transcripts were present at lower levels at all days studied post-infection in neurons; (c) Western blot analysis showed less VZV IE 63 and very little detectable VZV gE proteins in infected neurons compared with HFL; (d) lower levels of the apoptotic marker cleaved Caspase-3 protein were detected in VZV-infected neurons compared with HFL, and higher levels of the known anti-apoptotic proteins Bcl2, Bcl-XL and also the mitochondrial MT-CO2 protein were found in VZV-infected neurons compared with uninfected cells; and (e) both the MT-CO2 protein and VZV IE 63-encoded protein were detected in infected neurons by dual immunofluorescence. These findings showed that neurons are resistant to VZV-induced apoptosis, which may have relevance to the switching of VZV from a lytic to latent ganglionic neuronal infection.


Asunto(s)
Apoptosis/genética , ADN Viral/genética , Herpesvirus Humano 3/genética , Interacciones Huésped-Patógeno/genética , Neuronas/virología , Latencia del Virus/genética , Apoptosis/inmunología , Caspasa 3/genética , Caspasa 3/inmunología , Línea Celular , ADN Viral/inmunología , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/inmunología , Feto , Fibroblastos/inmunología , Fibroblastos/virología , Regulación de la Expresión Génica , Herpesvirus Humano 3/crecimiento & desarrollo , Herpesvirus Humano 3/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/inmunología , Neuronas/inmunología , Especificidad de Órganos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/inmunología , ARN Mensajero/genética , ARN Mensajero/inmunología , Transducción de Señal , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Latencia del Virus/inmunología , Proteína bcl-X/genética , Proteína bcl-X/inmunología
8.
Anal Biochem ; 536: 8-15, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28803886

RESUMEN

Readily accessible samples such as urine or blood are seemingly ideal for differentiating and stratifying patients; however, it has proven a daunting task to identify reliable biomarkers in such samples. Noncoding RNA holds great promise as a source of biomarkers distinguishing physiologic wellbeing or illness. Current methods to isolate and characterize RNA molecules in urine are limited. In this proof of concept study, we present a method to extract and identify small noncoding RNAs in urine. Initially, quantitative reverse transcription PCR was applied to confirm the presence of microRNAs in total RNA extracted from urine. Once the presence of micro RNA in urine was confirmed, we developed a method to scale up RNA extraction to provide adequate amounts of RNA for next generation sequence analysis. The method described in this study is applicable to detecting a broad range of small noncoding RNAs in urine; thus, they have wide applicability for health and disease analyses.


Asunto(s)
MicroARNs/genética , MicroARNs/orina , Neoplasias Ováricas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Anciano , Femenino , Humanos , MicroARNs/aislamiento & purificación , Persona de Mediana Edad , Neoplasias Ováricas/orina
9.
Int J Hyperthermia ; 33(3): 303-317, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27829290

RESUMEN

BACKGROUND: Agents targeting HSP90 and GRP94 are seldom tested in stressed contexts such as heat shock (HS) or the unfolded protein response (UPR). Tumor stress often activates HSPs and the UPR as pro-survival mechanisms. This begs the question of stress effects on chemotherapeutic efficacy, particularly with drugs targeting chaperones such as HSP90 or GRP94. We tested the utility of several HSP90 inhibitors, including PU-H71 (targeting GRP94), on a primary canine lung cancer line under HS/UPR stress compared to control conditions. METHODS: We cultured canine bronchoalveolar adenocarcinoma cells that showed high endogenous HSP90 and GRP94 expression; these levels substantially increased upon HS or UPR induction. We treated cells with HSP90 inhibitors 17-DMAG, 17-AAG or PU-H71 under standard conditions, HS or UPR. Cell viability/survival was assayed. Antibody arrays measured intracellular signalling and apoptosis profiles. RESULTS: HS and UPR had varying effects on cells treated with different HSP90 inhibitors; in particular, HS and UPR promoted resistance to inhibitors in short-term assays, but combinations of UPR stress and PU-H571 showed potent cytotoxic activity in longer-term assays. Array data indicated altered signalling pathways, with apoptotic and pro-survival implications. UPR induction + dual targeting of HSP90 and GRP94 swayed the balance toward apoptosis. CONCLUSION: Cellular stresses, endemic to tumors, or interventionally inducible, can deflect or enhance chemo-efficacy, particularly with chaperone-targeting drugs. Stress is likely not held accountable when testing new pharmacologics or assessing currently-used drugs. A better understanding of stress impacts on drug activities should be critical in improving therapeutic targeting and in discerning mechanisms of drug resistance.

10.
Mol Cell Proteomics ; 14(4): 1093-103, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25605460

RESUMEN

Tuberculosis is a global infectious disease caused by Mycobacterium tuberculosis (Mtb). Although novel Mtb biomarkers from both the pathogen and host have been studied, more breakthroughs are still needed to meet different clinic requirements. In an effort to identify Mtb antigens, chaperone-peptide complexes were purified from TB infected lungs using free-solution isoelectric focusing combined with high resolution LTQ Orbitrap Velos mass spectrometry. Antigen specific cellular immune responses in vitro were then examined. Those efforts led to the identification of six Mtb peptides only identified in Tuberculosis lung samples and that were not found in the control samples. Additionally, antigen-specific IFN-γ secretion, T-cell proliferation, cytokine expression, and a cytotoxic assay were also evaluated. Among the peptides isolated, we identified a 34 amino acid peptide named PKAp belonging to a serine/threonine-protein kinase, as being able to generate Mtb-specific cellular immune responses as noted by elevated antigen-specific cytokine secretion levels, increased CD8(+) T-cell proliferation and a strong cytotoxic lymphocyte (CTL) response. Moreover, the immune stimulating abilities of PKAp were further validated in vivo, with target peptide immunized mice showing an increased cellular IFN-γ in both the lungs and spleen without causing immunopathogenesis. In conclusion, we identified novel functional Mtb antigens directly from the granulomatous lesions of Tuberculosis patients, inducing not only significant antigen-specific IFN-γ secretion but also a marked cytotoxic lymphocyte functional response. These findings indicated that PKAp has potential as a novel antigen biomarker for vaccine development.


Asunto(s)
Antígenos Bacterianos/inmunología , Granuloma/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Adulto , Secuencia de Aminoácidos , Animales , Proliferación Celular , Epítopos de Linfocito T/inmunología , Femenino , Fluorescencia , Granuloma/microbiología , Proteínas HSP70 de Choque Térmico/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunización , Interferón gamma/metabolismo , Focalización Isoeléctrica , Pulmón/metabolismo , Masculino , Espectrometría de Masas , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Persona de Mediana Edad , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Linfocitos T Citotóxicos/inmunología , Tuberculosis/microbiología
11.
Biochim Biophys Acta ; 1838(11): 2954-65, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25102470

RESUMEN

Small endogenous vesicles called exosomes are beginning to be explored as drug delivery vehicles. The in vivo targets of exosomes are poorly understood; however, they are believed to be important in cell-to-cell communication and may play a prominent role in cancer metastasis. We aimed to elucidate whether cancer derived exosomes can be used as drug delivery vehicles that innately target tumors over normal tissue. Our in vitro results suggest that while there is some specificity towards cancer cells over "immortalized" cells, it is unclear if the difference is sufficient to achieve precise in vivo targeting. Additionally, we found that exosomes associate with their cellular targets to a significantly greater extent (>10-fold) than liposomes of a similar size. Studies on the association of liposomes mimicking the unique lipid content of exosomes revealed that the lipid composition contributes significantly to cellular adherence/internalization. Cleavage of exosome surface proteins yielded exosomes exhibiting reduced association with their cellular targets, demonstrating the importance of proteins in binding/internalization. Furthermore, although acidic conditions are known to augment the metastatic potential of tumors, we found that cells cultured at low pH released exosomes with significantly less potential for cellular association than cells cultured at physiological pH.

12.
Mol Carcinog ; 54(7): 554-65, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24347249

RESUMEN

Hypoxic conditions in prostate cancer (PCA) are associated with poor prognosis; however, precise mechanism/s through which hypoxia promotes malignant phenotype remains unclear. Here, we analyzed the role of exosomes from hypoxic PCA cells in enhancing the invasiveness and stemness of naïve PCA cells, as well as in promoting cancer-associated fibroblast (CAF) phenotype in prostate stromal cells (PrSC). Human PCA LNCaP and PC3 cells were exposed to hypoxic (1% O2 ) or normoxic (21% O2 ) conditions, and exosomes secreted under hypoxic (Exo(Hypoxic) ) and normoxic (Exo(Normoxic) ) conditions were isolated from conditioned media. Nanoparticle tracking analysis revealed that Exo(Hypoxic) have smaller average size as compared to Exo(Normoxic) . Immunoblotting results showed a higher level of tetraspanins (CD63 and CD81), heat shock proteins (HSP90 and HSP70), and Annexin II in Exo(Hypoxic) compared to Exo(Normoxic) . Co-culturing with Exo(Hypoxic) increased the invasiveness and motility of naïve LNCaP and PC3 cells, respectively. Exo(Hypoxic) also promoted prostasphere formation by both LNCaP and PC3 cells, and enhanced α-SMA (a CAF biomarker) expression in PrSC. Compared to Exo(Normoxic) , Exo(Hypoxic) showed higher metalloproteinases activity and increased level of diverse signaling molecules (TGF-ß2, TNF1α, IL6, TSG101, Akt, ILK1, and ß-catenin). Furthermore, proteome analysis revealed a higher number of proteins in Exo(Hypoxic) (160 proteins) compared to Exo(Normoxic) (62 proteins), primarily associated with the remodeling of epithelial adherens junction pathway. Importantly, Exo(Hypoxic) targeted the expression of adherens junction proteins in naïve PC3 cells. These findings suggest that Exo(Hypoxic) are loaded with unique proteins that could enhance invasiveness, stemness, and induce microenvironment changes; thereby, promoting PCA aggressiveness.


Asunto(s)
Uniones Adherentes/patología , Exosomas/patología , Hipoxia/complicaciones , Próstata/patología , Neoplasias de la Próstata/complicaciones , Neoplasias de la Próstata/patología , Uniones Adherentes/metabolismo , Anexina A2/análisis , Anexina A2/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Movimiento Celular , Técnicas de Cocultivo , Exosomas/metabolismo , Proteínas de Choque Térmico/análisis , Proteínas de Choque Térmico/metabolismo , Humanos , Hipoxia/metabolismo , Hipoxia/patología , Masculino , Metaloproteasas/análisis , Metaloproteasas/metabolismo , Invasividad Neoplásica/patología , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Transducción de Señal , Tetraspaninas/análisis , Tetraspaninas/metabolismo
13.
Cancer Sci ; 105(11): 1384-92, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25220623

RESUMEN

Exosomes are virus-sized, membrane-enclosed vesicles with origins in the cellular endosomal system, but are released extracellularly. As a population, these tiny vesicles carry relatively enormous amounts of information in their protein, lipid and nucleic acid content, and the vesicles can have profound impacts on recipient cells. This review employs publically-available data combined with gene ontology applications to propose a novel concept, that exosomes transport transcriptional and translational machinery that may have direct impacts on gene expression in recipient cells. Here, we examine the previously published proteomic contents of medulloblastoma-derived exosomes, focusing on transcriptional regulators; we found that there are numerous proteins that may have potential roles in transcriptional and translational regulation with putative influence on downstream, cancer-related pathways. We expanded this search to all of the proteins in the Vesiclepedia database; using gene ontology approaches, we see that these regulatory factors are implicated in many of the processes involved in cancer initiation and progression. This information suggests that some of the effects of exosomes on recipient cells may be due to the delivery of protein factors that can directly and fundamentally change the transcriptional landscape of the cells. Within a tumor environment, this has potential to tilt the advantage towards the cancer.


Asunto(s)
Exosomas/metabolismo , Neoplasias/metabolismo , Proteoma , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Espacio Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Proteómica , Proteínas de Unión al ARN/metabolismo , Transcripción Genética
14.
Bioconjug Chem ; 25(10): 1777-84, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25220352

RESUMEN

A method for conjugation of ligands to the surface of exosomes was developed using click chemistry. Copper-catalyzed azide alkyne cycloaddition (click chemistry) is ideal for biocojugation of small molecules and macromolecules to the surface of exosomes, due to fast reaction times, high specificity, and compatibility in aqueous buffers. Exosomes cross-linked with alkyne groups using carbodiimide chemistry were conjugated to a model azide, azide-fluor 545. Conjugation had no effect on the size of exosomes, nor was there any change in the extent of exosome adherence/internalization with recipient cells, suggesting the reaction conditions were mild on exosome structure and function. We further investigated the extent of exosomal protein modification with alkyne groups. Using liposomes with surface alkyne groups of a similar size and concentration to exosomes, we estimated that approximately 1.5 alkyne groups were present for every 150 kDa of exosomal protein.


Asunto(s)
Alquinos/química , Azidas/química , Química Clic , Exosomas/química , Animales , Línea Celular , Cobre/química , Reactivos de Enlaces Cruzados/química , Reacción de Cicloadición , Ratones , Propiedades de Superficie
15.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645117

RESUMEN

Glioblastomas (GBMs) are dreadful brain tumors with abysmal survival outcomes. GBM EVs dramatically affect normal brain cells (largely astrocytes) constituting the tumor microenvironment (TME). EVs from different patient-derived GBM spheroids induced differential transcriptomic, secretomic, and proteomic effects on cultured astrocytes/brain tissue slices as GBM EV recipients. The net outcome of brain cell differential changes nonetheless converges on increased tumorigenicity. GBM spheroids and brain slices were derived from neurosurgical patient tissues following informed consent. Astrocytes were commercially obtained. EVs were isolated from conditioned culture media by ultrafiltration, ultraconcentration, and ultracentrifugation. EVs were characterized by nanoparticle tracking analysis, electron microscopy, biochemical markers, and proteomics. Astrocytes/brain tissues were treated with GBM EVs before downstream analyses. EVs from different GBMs induced brain cells to alter secretomes with pro-inflammatory or TME-modifying (proteolytic) effects. Astrocyte responses ranged from anti-viral gene/protein expression and cytokine release to altered extracellular signal-regulated protein kinase (ERK1/2) signaling pathways, and conditioned media from EV-treated cells increased GBM cell proliferation. Thus, astrocytes/brain slices treated with different GBM EVs underwent non-identical changes in various 'omics readouts and other assays, indicating "personalized" tumor-specific GBM EV effects on the TME. This raises concern regarding reliance on "model" systems as a sole basis for translational direction. Nonetheless, net downstream impacts from differential cellular and TME effects still led to increased tumorigenic capacities for the different GBMs.

16.
Int J Hyperthermia ; 29(5): 380-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23725202

RESUMEN

Tumour-derived chaperone-rich cell lysate (CRCL) when isolated from tumour tissue or when embedded with peptide antigens is a potent anti-cancer vaccine consisting of numerous chaperone/heat shock proteins, including the highly immunogenic Hsp70, Hsp90, glucose regulated protein 94, and calreticulin. We have previously documented that CRCL provides both a source of tumour antigens and danger signals triggering antigen presenting cell activation. In this report we describe the 'peptidome' of potential antigens extracted from CRCL prepared from a murine tumour. Using mass spectrometry techniques we identify almost 60 different proteins of origin for the CRCL peptides; we determine that the parental proteins come from essentially all parts of the cell, and are involved in a broad range of functions. Further in silico analysis demonstrates that the parental proteins are components of major signalling networks of vital importance for cancer cell survival, proliferation, and migration. In many instances the peptides identified possess amino acid sequences that would allow their putative binding and display by murine major histocompatibility complex class I and II molecules, and there are also predicted binding motifs for Hsp70-type chaperones. By mixing fractionated pools of peptides with antigen-free (normal liver) CRCL, we were able to reconstitute effective anti-tumour activity of the vaccine, showing that the peptides are indeed the major purveyors of CRCL vaccines' efficacy.


Asunto(s)
Antígenos de Neoplasias/inmunología , Calreticulina/inmunología , Vacunas contra el Cáncer/uso terapéutico , Proteínas HSP70 de Choque Térmico/inmunología , Proteínas HSP90 de Choque Térmico/inmunología , Neoplasias/terapia , Animales , Antígenos de Neoplasias/metabolismo , Calreticulina/metabolismo , Línea Celular Tumoral , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Hígado/metabolismo , Ratones , Ratones Endogámicos BALB C , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Péptidos/inmunología , Péptidos/metabolismo , Proteoma , Carga Tumoral
17.
Int J Hyperthermia ; 29(6): 520-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23734882

RESUMEN

PURPOSE: The aim of this paper was to compare protein content of chaperone-rich cell lysate (CRCL) anti-cancer vaccines prepared from human tumours of different histological origins to evaluate the uniformity of their protein content. MATERIALS AND METHODS: Clinical grade CRCL was prepared under Good Manufacturing Practice (GMP) conditions from surgically resected human tumours (colorectal cancer, glioblastoma, non-small cell lung cancer, ovarian cancer). Protein samples were separated by SDS-PAGE and slices cut from gels for protease digestion followed by mass spectrometry analysis. Proteins were identified, and the content assessed by gene ontogeny/networking programmatic computation. CRCL preparations were also analysed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). RESULTS: We identified between 200 and 550 proteins in the various CRCL preparations. Gene ontogeny analysis indicated that the vaccines showed clear relationships, despite different tumour origins. A total of 95 proteins were common to all the CRCLs. Networking analyses implicated heat shock proteins in antigen processing pathways, and showed connections to the cytoskeletal network. We found that CRCL vaccines showed a particulate structure by NTA, and TEM revealed an extended fence-like structural network in CRCL, with regions that were microns in size. CONCLUSIONS: We conclude that it is feasible to prepare and characterise CRCL from a variety of different tissue sources; a substantial portion of the protein content is identical among the different CRCLs, while the overall compositions also suggest high overlaps in functional categories. The protein content indicates the presence of antigens and implies a potential structure, which we believe may play a role in CRCL's ability to stimulate innate antigen presenting cell activation.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Vacunas contra el Cáncer , Neoplasias/metabolismo , Proteoma , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Chaperonas Moleculares/metabolismo , Neoplasias/inmunología , Proteómica
18.
Int J Hyperthermia ; 29(5): 390-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23786302

RESUMEN

PURPOSE: This paper presents the treatment of a 12-year-old female spayed Great Dane who presented with vestibular signs (ataxia, nystagmus, hind end collapse). Thoracic radiographs revealed a discrete pulmonary nodule in the right cranial lung lobe. Ultrasound-guided fine needle aspirate detected primary bronchoalveolar adenocarcinoma, verified via computed tomography, with a second smaller nodule discovered in the right cranial lung lobe. MATERIALS AND METHODS: A lateral thoracotomy with right cranial lung lobectomy was performed. Histopathological analysis of the nodules and an excised lymph node identified grade III bronchoalveolar adenocarcinoma with vascular infiltration and lymph node metastasis - a grim diagnosis with a reported median survival time of 6-27 days. A 10-g sample of the tumour was processed into a chaperone-rich cell lysate (CRCL) vaccine, which was administered weekly to the patient. Imiquimod - a Toll-like receptor 7 (TLR7) agonist - was applied topically for the first 12 treatments to stimulate local Langerhans cells. A single injection of bacillus Calmette-Guerin (BCG) was administered for additional immune stimulation at week 30 of treatment. RESULTS: The dog remained stable and in otherwise good health until diffuse relapse occurred 44 weeks after the initial treatment; following gastrointestinal bleeding, the dog was euthanised 50+ weeks post diagnosis. CONCLUSION: To the authors' knowledge, this is the first report of significantly prolonged survival following a diagnosis of grade III/stage III bronchoalveolar adenocarcinoma in a canine patient. This case report suggests that CRCL vaccine combined with topical imiquimod is a safe, effective treatment for canine tumours.


Asunto(s)
Adenocarcinoma Bronquioloalveolar/terapia , Vacunas contra el Cáncer/uso terapéutico , Enfermedades de los Perros/terapia , Neoplasias Pulmonares/terapia , Chaperonas Moleculares/inmunología , Adenocarcinoma Bronquioloalveolar/diagnóstico por imagen , Adenocarcinoma Bronquioloalveolar/patología , Adenocarcinoma Bronquioloalveolar/veterinaria , Animales , Enfermedades de los Perros/diagnóstico por imagen , Enfermedades de los Perros/patología , Perros , Femenino , Pulmón/diagnóstico por imagen , Pulmón/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/veterinaria , Radiografía
19.
J Clin Med ; 12(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240536

RESUMEN

Glioblastomas (GBM) are a devastating disease with extremely poor clinical outcomes. Resident (microglia) and infiltrating macrophages are a substantial component of the tumor environment. In GBM and other cancers, tumor-derived extracellular vesicles (EVs) suppress macrophage inflammatory responses, impairing their ability to identify and phagocytose cancerous tissues. Furthermore, these macrophages then begin to produce EVs that support tumor growth and migration. This cross-talk between macrophages/microglia and gliomas is a significant contributor to GBM pathophysiology. Here, we review the mechanisms through which GBM-derived EVs impair macrophage function, how subsequent macrophage-derived EVs support tumor growth, and the current therapeutic approaches to target GBM/macrophage EV crosstalk.

20.
J Neurol Surg B Skull Base ; 84(5): 452-462, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37671294

RESUMEN

Background Epigenetics may predict treatment sensitivity and clinical course for patients with meningiomas more accurately than histopathology. Nonetheless, targeting epigenetic mechanisms is understudied for pharmacotherapeutic development for these tumors. The bio-molecular insights and potential therapeutic development of meningioma epigenetics led us to investigate epigenetic inhibition in meningiomas. Methods We screened a 43-tumor cohort using a 139-compound epigenetic inhibitor library to assess sensitivity of relevant meningioma subgroups to epigenetic inhibition. The cohort was composed of 5 cell lines and 38 tumors cultured directly from surgery; mean patient age was 56.6 years ± 13.9 standard deviation. Tumor categories: 38 primary tumors, 5 recurrent; 33 from females, 10 from males; 32 = grade 1; 10 = grade 2; 1 = grade 3. Results Consistent with our previous results, histone deacetylase inhibitors (HDACi) were the most efficacious class. Panobinostat significantly reduced cell viability in 36 of 43 tumors; 41 tumors had significant sensitivity to some HDACi. G9a inhibition and Jumonji-domain inhibition also significantly reduced cell viability across the cohort; tumors that lost sensitivity to panobinostat maintained sensitivity to either G9a or Jumonji-domain inhibition. Sensitivity to G9a and HDAC inhibition increased with tumor grade; tumor responses did not separate by gender. Few differences were found between recurrent and primary tumors, or between those with prior radiation versus those without. Conclusions Few efforts have investigated the efficacy of targeting epigenetic mechanisms to treat meningiomas, making the clinical utility of epigenetic inhibition largely unknown. Our results suggest that epigenetic inhibition is a targetable area for meningioma pharmacotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA