Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(7): e2213682120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745816

RESUMEN

Oxytocin (OT) is a prominent regulator of many aspects of mammalian social behavior and stored in large dense-cored vesicles (LDCVs) in hypothalamic neurons. It is released in response to activity-dependent Ca2+ influx, but is also dependent on Ca2+ release from intracellular stores, which primes LDCVs for exocytosis. Despite its importance, critical aspects of the Ca2+-dependent mechanisms of its secretion remain to be identified. Here we show that lysosomes surround dendritic LDCVs, and that the direct activation of endolysosomal two-pore channels (TPCs) provides the critical Ca2+ signals to prime OT release by increasing the releasable LDCV pool without directly stimulating exocytosis. We observed a dramatic reduction in plasma OT levels in TPC knockout mice, and impaired secretion of OT from the hypothalamus demonstrating the importance of priming of neuropeptide vesicles for activity-dependent release. Furthermore, we show that activation of type 1 metabotropic glutamate receptors sustains somatodendritic OT release by recruiting TPCs. The priming effect could be mimicked by a direct application of nicotinic acid adenine dinucleotide phosphate, the endogenous messenger regulating TPCs, or a selective TPC2 agonist, TPC2-A1-N, or blocked by the antagonist Ned-19. Mice lacking TPCs exhibit impaired maternal and social behavior, which is restored by direct OT administration. This study demonstrates an unexpected role for lysosomes and TPCs in controlling neuropeptide secretion, and in regulating social behavior.


Asunto(s)
Canales de Calcio , Oxitocina , Ratones , Animales , Canales de Calcio/metabolismo , Oxitocina/metabolismo , Calcio/metabolismo , Ratones Noqueados , Lisosomas/metabolismo , NADP/metabolismo , Señalización del Calcio/fisiología , Mamíferos/metabolismo
2.
Cereb Cortex ; 32(18): 3990-4011, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34905774

RESUMEN

Both social behavior and stress responses rely on the activity of the prefrontal cortex (PFC) and basolateral nucleus of the amygdala (BLA) and on cholinergic transmission. We previously showed in adult C57BL/6J (B6) mice that social interaction has a buffering effect on stress-related prefrontal activity, depending on the ß2-/- cholinergic nicotinic receptors (nAChRs, ß2-/- mice). The latency for this buffer to emerge being short, we question here whether the associated brain plasticity, as reflected by regional c-fos protein quantification and PFC-BLA functional connectivity, is modulated by time. Overall, we show that time normalized the stress-induced PFC hyperactivation in B6 mice and PFC hypo-activation in ß2-/- mice, with no effect on BLA. It also triggered a multitude of functional links between PFC subareas, and between PFC and BLA in B6 mice but not ß2-/- mice, showing a central role of nAChRs in this plasticity. Coupled with social interaction and time, stress led to novel and drastic diminution of functional connectivity within the PFC in both genotypes. Thus, time, emotional state, and social behavior induced dissociated effects on PFC and BLA activity and important cortico-cortical reorganizations. Both activity and plasticity were under the control of the ß2-nAChRs.


Asunto(s)
Nicotina , Receptores Nicotínicos , Animales , Encéfalo/metabolismo , Colinérgicos/metabolismo , Colinérgicos/farmacología , Ratones , Ratones Endogámicos C57BL , Nicotina/farmacología , Corteza Prefrontal/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Nicotínicos/metabolismo
3.
Cereb Cortex ; 32(7): 1365-1378, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-34491298

RESUMEN

We investigated the detrimental effects of chronic consumption of sweet or sweetened beverages in mice. We report that consumption of beverages containing small amounts of sucrose during several weeks impaired reward systems. This is evidenced by robust changes in the activation pattern of prefrontal brain regions associated with abnormal risk-taking and delayed establishment of decision-making strategy. Supporting these findings, we find that chronic consumption of low doses of artificial sweeteners such as saccharin disrupts brain regions' activity engaged in decision-making and reward processes. Consequently, this leads to the rapid development of inflexible decisions, particularly in a subset of vulnerable individuals. Our data also reveal that regular consumption, even at low doses, of sweet or sweeteners dramatically alters brain neurochemistry, i.e., dopamine content and turnover, and high cognitive functions, while sparing metabolic regulations. Our findings suggest that it would be relevant to focus on long-term consequences on the brain of sweet or sweetened beverages in humans, especially as they may go metabolically unnoticed.


Asunto(s)
Bebidas Azucaradas , Animales , Bebidas , Cognición , Ratones , Recompensa , Gusto/fisiología
4.
Hum Mol Genet ; 28(5): 701-717, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30357341

RESUMEN

Genetic disruptions of the forkhead box transcription factor FOXP2 in humans cause an autosomal-dominant speech and language disorder. While FOXP2 expression pattern are highly conserved, its role in specific brain areas for mammalian social behaviors remains largely unknown. Here we studied mice carrying a homozygous cortical Foxp2 deletion. The postnatal development and gross morphological architecture of mutant mice was indistinguishable from wildtype (WT) littermates. Unbiased behavioral profiling of adult mice revealed abnormalities in approach behavior towards conspecifics as well as in the reciprocal responses of WT interaction partners. Furthermore mutant mice showed alterations in acoustical parameters of ultrasonic vocalizations, which also differed in function of the social context. Cell type-specific gene expression profiling of cortical pyramidal neurons revealed aberrant regulation of genes involved in social behavior. In particular Foxp2 mutants showed the downregulation of Mint2 (Apba2), a gene involved in approach behavior in mice and autism spectrum disorder in humans. Taken together these data demonstrate that cortical Foxp2 is required for normal social behaviors in mice.


Asunto(s)
Conducta Animal , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Factores de Transcripción Forkhead/deficiencia , Eliminación de Gen , Proteínas Represoras/deficiencia , Conducta Social , Animales , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Homocigoto , Ratones , Ratones Noqueados , Neuronas/metabolismo
5.
Exp Brain Res ; 239(6): 1929-1936, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33876262

RESUMEN

Previous studies have reported (i) freezing-like posturographic correlates in response to painful as compared to non-painful scenes vision (Lelard et al., Front Hum Neurosci 7:4, 2013) and (ii) an increase of this response during the mental simulation as compared to the passive viewing of the painful scenes (Lelard et al., Front Psychol 8:2012, 2017). The main objective of the present study was to explore the modulation of posturographic correlates of painful scenes vision by the level of depicted pain and the influence of mental simulation on this modulation. Thirty-six participants (36.3 ± 11.4 years old) were included in this study. During the experiment, participants had to stand on a posturographic platform. Three types of static visual stimuli were randomly depicting different pain-level situations: no-pain, low-pain, high-pain. In a first run, participants watched these stimuli passively (passive condition); in a second run, they were asked to "imagine that they were personally experiencing the situations they were about to see" (mental simulation condition). For each picture, subjective ratings were recorded for displeasure and desire to avoid at the end of the posturographic session. Results support an approach-type behavior in response to high-pain stimuli in the passive condition which becomes a withdrawal-type behavior in the mental simulation condition. Moreover, this withdrawal-type behavior is modulated by the level of depicted pain and this modulation does not appear for the subjective data. As a conclusion, these results are in accordance with those of previous studies showing the modulation of posturographic correlates of pain perception by mental simulation and report, for the first time, modulation of this effect by the level of depicted pain. The dichotomy of this modulatory effect between subjective and objective data is discussed as well as the finding of an approach-type behavior towards painful stimuli when passively viewing them becoming a withdrawal-type behavior when mental simulation is applied to the same stimuli.


Asunto(s)
Percepción del Dolor , Dolor , Humanos , Procesos Mentales , Dimensión del Dolor
6.
Proc Natl Acad Sci U S A ; 115(7): 1611-1616, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29378968

RESUMEN

The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.


Asunto(s)
Enfermedad de Borna/virología , Virus de la Enfermedad de Borna/fisiología , Trastornos del Conocimiento/etiología , Hipocampo/virología , Memoria a Largo Plazo/fisiología , Fosfoproteínas/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Estructurales Virales/metabolismo , Animales , Enfermedad de Borna/metabolismo , Enfermedad de Borna/patología , Células Cultivadas , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Giro Dentado/metabolismo , Giro Dentado/patología , Giro Dentado/virología , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Mutación , Plasticidad Neuronal , Neuronas/metabolismo , Neuronas/patología , Neuronas/virología , Fosfoproteínas/genética , Fosforilación , Proteína Quinasa C/genética , Proteínas Estructurales Virales/genética
7.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34769238

RESUMEN

For decades, numerous chemical pollutants have been described to interfere with endogenous hormone metabolism/signaling altering reproductive functions. Among these endocrine disrupting substances, Bisphenol A (BPA), a widely used compound, is known to negatively impact germ and somatic cells in the testis. Physical agents, such as ionizing radiation, were also described to perturb spermatogenesis. Despite the fact that we are constantly exposed to numerous environmental chemical and physical compounds, very few studies explore the impact of combined exposure to chemical and physical pollutants on reproductive health. The aim of this study was to describe the impact of fetal co-exposure to BPA and IR on testicular function in mice. We exposed pregnant mice to 10 µM BPA (corresponding to 0.5 mg/kg/day) in drinking water from 10.5 dpc until birth, and we irradiated mice with 0.2 Gy (γ-ray, RAD) at 12.5 days post-conception. Co-exposure to BPA and γ-ray induces DNA damage in fetal germ cells in an additive manner, leading to a long-lasting decrease in germ cell abundance. We also observed significant alteration of adult steroidogenesis by RAD exposure independently of the BPA exposure. This is illustrated by the downregulation of steroidogenic genes and the decrease of the number of adult Leydig cells. As a consequence, courtship behavior is modified, and male ultrasonic vocalizations associated with courtship decreased. In conclusion, this study provides evidence for the importance of broadening the concept of endocrine disruptors to include physical agents, leading to a reevaluation of risk management and regulatory decisions.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Rayos gamma/efectos adversos , Células Intersticiales del Testículo/metabolismo , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Animales , Femenino , Células HeLa , Humanos , Células Intersticiales del Testículo/patología , Masculino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Traumatismos Experimentales por Radiación/patología
8.
FASEB J ; 33(5): 5823-5835, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30844310

RESUMEN

Autism spectrum disorder (ASD) is characterized by early onset of behavioral and cognitive alterations. Low plasma levels of oxytocin (OT) have also been found in ASD patients; recently, a critical role for the enzyme CD38 in the regulation of OT release was demonstrated. CD38 is important in regulating several Ca2+-dependent pathways, but beyond its role in regulating OT secretion, it is not known whether a deficit in CD38 expression leads to functional modifications of the prefrontal cortex (PFC), a structure involved in social behavior. Here, we report that CD38-/- male mice show an abnormal cortex development, an excitation-inhibition balance shifted toward a higher excitation, and impaired synaptic plasticity in the PFC such as those observed in various mouse models of ASD. We also show that a lack of CD38 alters social behavior and emotional responses. Finally, examining neuromodulators known to control behavioral flexibility, we found elevated monoamine levels in the PFC of CD38-/- adult mice. Overall, our study unveiled major changes in PFC physiologic mechanisms and provides new evidence that the CD38-/- mouse could be a relevant model to study pathophysiological brain mechanisms of mental disorders such as ASD.-Martucci, L. L., Amar, M., Chaussenot, R., Benet, G., Bauer, O., de Zélicourt, A., Nosjean, A., Launay, J.-M., Callebert, J., Sebrié, C., Galione, A., Edeline, J.-M., de la Porte, S., Fossier, P., Granon, S., Vaillend, C., Cancela, J.-M., A multiscale analysis in CD38-/- mice unveils major prefrontal cortex dysfunctions.


Asunto(s)
ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Plasticidad Neuronal , Corteza Prefrontal/fisiopatología , Aminas/metabolismo , Animales , Ansiedad , Trastorno del Espectro Autista/genética , Conducta Animal , Tronco Encefálico , Calcio/metabolismo , Miedo , Regulación de la Expresión Génica , Genotipo , Imagen por Resonancia Magnética , Masculino , Aprendizaje por Laberinto , Megalencefalia/fisiopatología , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxitocina/sangre , Polimorfismo de Nucleótido Simple , Reflejo de Sobresalto , Factores de Riesgo , Conducta Social
9.
Nat Methods ; 9(4): 410-7, 2012 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-22388289

RESUMEN

The study of social interactions in mice is used as a model for normal and pathological cognitive and emotional processes. But extracting comprehensive behavioral information from videos of interacting mice is still a challenge. We describe a computerized method and software, MiceProfiler, that uses geometrical primitives to model and track two mice without requiring any specific tagging. The program monitors a comprehensive repertoire of behavioral states and their temporal evolution, allowing the identification of key elements that trigger social contact. Using MiceProfiler we studied the role of neuronal nicotinic receptors in the establishment of social interactions and risk-prone postures. We found that the duration and type of social interactions with a conspecific evolves differently over time in mice lacking neuronal nicotinic receptors (Chrnb2-/-, here called ß2(-/-)), compared to C57BL/6J mice, and identified a new type of coordinated posture, called back-to-back posture, that we rarely observed in ß2(-/-) mice.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Conducta Social , Grabación en Video , Animales , Automatización , Conducta de Elección , Aprendizaje , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Postura/fisiología , Receptores Nicotínicos/deficiencia , Receptores Nicotínicos/metabolismo , Reproducibilidad de los Resultados , Programas Informáticos , Factores de Tiempo , Campos Visuales/fisiología
10.
FASEB J ; 27(11): 4343-54, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23882123

RESUMEN

Social animals establish flexible behaviors and integrated decision-making processes to adapt to social environments. Such behaviors are impaired in all major neuropsychiatric disorders and depend on the prefrontal cortex (PFC). We previously showed that nicotinic acetylcholine receptors (nAChRs) and norepinephrine (NE) in the PFC are necessary for mice to show adapted social cognition. Here, we investigated how the cholinergic and NE systems converge within the PFC to modulate social behavior. We used a social interaction task (SIT) in C57BL/6 mice and mice lacking ß2*nAChRs (ß2(-/-) mice), making use of dedicated software to analyze >20 social sequences and pinpoint social decisions. We performed specific PFC NE depletions before SIT and measured monoamines and acetylcholine (ACh) levels in limbic corticostriatal circuitry. After PFC-NE depletion, C57BL/6 mice exhibited impoverished and more rigid social behavior and were 6-fold more aggressive than sham-lesioned animals, whereas ß2(-/-) mice showed unimpaired social behavior. Our biochemical measures suggest a critical involvement of DA in SIT. In addition, we show that the balance between basal levels of monoamines and of ACh modulates aggressiveness and this modulation requires functional ß2*nAChRs. These findings demonstrate the critical interplay between prefrontal NE and nAChRs for the development of adapted and nonaggressive social cognition.


Asunto(s)
Agresión , Cognición , Corteza Prefrontal/fisiología , Receptores Adrenérgicos/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Animales , Toma de Decisiones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Norepinefrina/metabolismo , Corteza Prefrontal/metabolismo , Receptores Nicotínicos/genética
11.
Appl Neuropsychol Adult ; : 1-19, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38354094

RESUMEN

We present adult normalized data for MindPulse (MP), a new tool evaluating attentional and executive functioning (AEF) in decision-making. We recruited 722 neurotypical participants (18-80 years), with 149 retested. The MP test includes three tasks: Simple Reaction Time (SRT), Go/No-go, and complex Go/No-go, involving perceptual components, motor responses, and measurements of reaction time (RT) and correctness. We compare responses, evaluating 14 cognitive indices (including new composite indices to describe AEF: Executive Speed and Reaction to Difficulty). We adjust for age/sex effects, introduce a difficulty scale, and consider standard deviations, aberrant times, and Spearman Correlation for speed-accuracy balance. Wilcoxon unpaired rank test is used to assess sex effects, and linear regression is employed to assess the age linear dependency model on the normalized database. The study demonstrated age and sex effects on RTs, in all three subtests, and the ability to correct it for individual results. The test showed excellent validity (Cronbach Alpha for the three subtasks is 92, 87, 95%) and high internal consistency (p < 0.001 for each subtask significantly faster than the more complex subtask) of the MP across the wide age range. Results showed correlation within the three RT parts of the test (p < .001 for each) and the independence of SRT, RD, and ES indices. The Retest effect was lower than intersubject variance, showing consistency over time. This study highlights the MP test's strong validity on a homogeneous, large adult sample. It emphasizes assessing AEF and Reaction to Difficulty dynamically with high sensitivity.

12.
Cereb Cortex ; 22(5): 1007-15, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21810785

RESUMEN

Organization of locomotor behavior is altered in mice knockout for the ß2 subunit of the nicotinic receptor-ß2-/- mice-during novelty exploration. We investigated the neuronal basis of this alteration by measuring activation of the immediate early gene c-fos in the brains of wild-type (WT) and ß2-/- mice after exploration of a novel or a familiar environment. Results show 1) no constitutive difference between WT and ß2-/- mice in c-fos gene expression in any brain region, 2) novelty exploration triggered activation of the hippocampus and the reward circuit while exploration of a familiar environment produced increased activation in the amygdala, and 3) in ß2-/- mice, exploration of novelty, but not familiarity, induced an increase in activation in the prelimbic prefrontal cortex (PFC) compared with WT mice. c-Fos immunoreactivity after different stages of learning in a maze increased similarly in the prelimbic area of both WT and ß2-/- mice, while their performance differed. In WT mice, exploration of a novel environment triggered an increase in c-Fos expression in the reward circuit and the hippocampus, while in ß2-/- mice, the amygdala and the motor cortex were additionally activated. We also highlight the role of nicotinic receptors during activation of the PFC, specifically during free exploration of a novel environment.


Asunto(s)
Conducta Exploratoria/fisiología , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Perfilación de la Expresión Génica , Inmunohistoquímica , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-fos/análisis , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Receptores Nicotínicos/deficiencia , Recompensa
13.
FASEB J ; 25(7): 2145-55, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21402717

RESUMEN

Social behavior is a defining mammalian feature that integrates emotional and motivational processes with external rewarding stimuli. It is thus an appropriate readout for complex behaviors, yet its neuronal and molecular bases remain poorly understood. In this study, we investigated the role of the mouse prefrontal area, particularly the involvement of ß2-subunit nicotinic receptors (ß2*-nAChRs) in a paradigm of social behavior with concurrent motivations. We previously observed that mice lacking ß2*-nAChRs (ß2(-/-)) display increased time in social contact and exaggerated approach movements toward the novel conspecific. Here, combining behavioral analysis, localized brain lesions, and lentiviral gene rescue, we found that c-Fos expression is specifically activated in the prelimbic (PrL) area of the prefrontal cortex (PFC) of mice exposed to a novel conspecific; lesions of the PrL area in wild-type mice produce the same social pattern as in ß2(-/-) mice; and virally mediated reexpression of the ß2-subunit in the PrL area of ß2(-/-) mice rescues behavioral components in the social interaction task up to normal levels. Together, these data reveal that social interactions particularly mobilize the PrL area of the mouse PFC and that the presence of functional PrL ß2*-nAChRs is necessary for this integrated behavior to emerge.


Asunto(s)
Conducta Exploratoria/fisiología , Corteza Prefrontal/fisiopatología , Receptores Nicotínicos/fisiología , Conducta Social , Animales , Autorradiografía , Unión Competitiva , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Femenino , Prueba de Complementación Genética , Células HEK293 , Humanos , Inmunohistoquímica , Radioisótopos de Yodo , Lentivirus/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Actividad Motora/fisiología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Piridinas/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Transfección
14.
Front Behav Neurosci ; 16: 818746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431831

RESUMEN

In this paper, we review recent (published and novel) data showing inter-individual variation in decision-making strategies established by mice in a gambling task (MGT for Mouse Gambling Task). It may look intriguing, at first, that congenic animals develop divergent behaviors. However, using large groups of mice, we show that individualities emerge in the MGT, with about 30% of healthy mice displaying risk-averse choices while about 20-25% of mice make risk-prone choices. These strategies are accompanied by different brain network mobilization and individual levels of regional -prefrontal and striatal- monoamines. We further illustrate three ecological ways that influence drastically cognitive strategies in healthy adult mice: sleep deprivation, sucrose or artificial sweetener exposure, and regular exposure to stimulating environments. Questioning how to unmask individual strategies, what are their neural/neurochemical bases and whether we can shape or reshape them with different environmental manipulations is of great value, first to understand how the brain may build flexible decisions, and second to study behavioral plasticity, in healthy adult, as well as in developing brains. The latter may open new avenues for the identification of vulnerability traits to adverse events, before the emergence of mental pathologies.

15.
Brain Sci ; 12(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35884676

RESUMEN

In our contemporary societies, environmental issues are more and more important. An increasing number of studies explore the biological processes involved in environment perception and in particular try to highlight the mechanisms underlying the perception of environmental scenes by our brain. The main objective of the present study was to establish whether the visualization of clean and polluted environmental scenes would lead to differential postural reactions. Our hypothesis was based on a differential postural modulation that could be recorded when the subject is confronted with images representing a "polluted" environment, differential modulation which has been reported in previous studies in response to painful-scenes compared to non-painful scenes visualization.Thirty-one subjects participated in this study. Physiological measurements [heart rate variability (HRV) and electrodermal activity] and postural responses (Center Of Pression-COP-displacements) were recorded in response to perception of polluted or clean environmental scenes. We show, for the first time, that images representing polluted scenes evoke a weaker approach movement than images representing clean scenes. The displacement of the COP in the anteroposterior axis reflects an avoidance when subjects visualize "polluted" scenes. Our results demonstrate a clear distinction between "clean" and "polluted" environments according to the postural change they induce, correlated with the ratings of pleasure and approach evoked by images.

16.
PLoS One ; 17(8): e0272141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35925937

RESUMEN

The cholinergic system is an important modulator of brain processes. It contributes to the regulation of several cognitive functions and emotional states, hence altering behaviors. Previous works showed that cholinergic (nicotinic) receptors of the prefrontal cortex are needed for adapted social behaviors. However, these data were obtained in mutant mice that also present alterations of several neurotransmitter systems, in addition to the cholinergic system. ChAT-IRES-Cre mice, that express the Cre recombinase specifically in cholinergic neurons, are useful tools to investigate the role of the cholinergic circuits in behavior. However, their own behavioral phenotype has not yet been fully characterized, in particular social behavior. In addition, the consequences of aging on the cholinergic system of ChAT-IRES-Cre mice has never been studied, despite the fact that aging is known to compromise the cholinergic system efficiency. The aim of the current study was thus to characterize the social phenotype of ChAT-IRES-Cre mice both at young (2-3 months) and middle (10-11 months) ages. Our results reveal an alteration of the cholinergic system, evidenced by a decrease of ChAT, CHT and VAChT gene expression in the striatum of the mice, that was accompanied by mild social disturbances and a tendency towards anxiety. Aging decreased social dominance, without being amplified by the cholinergic alterations. Altogether, this study shows that ChAT-IRES-Cre mice are useful models for studying the cholinergic system's role in social behavior using appropriate modulating technics (optogenetic or DREADD).


Asunto(s)
Colina O-Acetiltransferasa , Neuronas Colinérgicas , Animales , Colina O-Acetiltransferasa/metabolismo , Colinérgicos , Neuronas Colinérgicas/metabolismo , Integrasas , Ratones , Ratones Transgénicos , Conducta Social
17.
Proc Natl Acad Sci U S A ; 105(5): 1710-5, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18227507

RESUMEN

Autism spectrum conditions (ASCs) are heritable conditions characterized by impaired reciprocal social interactions, deficits in language acquisition, and repetitive and restricted behaviors and interests. In addition to more complex genetic susceptibilities, even mutation of a single gene can lead to ASC. Several such monogenic heritable ASC forms are caused by loss-of-function mutations in genes encoding regulators of synapse function in neurons, including NLGN4. We report that mice with a loss-of-function mutation in the murine NLGN4 ortholog Nlgn4, which encodes the synaptic cell adhesion protein Neuroligin-4, exhibit highly selective deficits in reciprocal social interactions and communication that are reminiscent of ASCs in humans. Our findings indicate that a protein network that regulates the maturation and function of synapses in the brain is at the core of a major ASC susceptibility pathway, and establish Neuroligin-4-deficient mice as genetic models for the exploration of the complex neurobiological disorders in ASCs.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/psicología , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Ratones , Secuencia de Aminoácidos , Animales , Trastorno Autístico/fisiopatología , Encéfalo/anatomía & histología , Moléculas de Adhesión Celular Neuronal , Comunicación , Memoria , Ratones Noqueados , Datos de Secuencia Molecular , Tamaño de los Órganos , Conducta Social , Sinapsis/fisiología , Ultrasonido , Vocalización Animal
18.
Proc Natl Acad Sci U S A ; 105(41): 15991-6, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-18832468

RESUMEN

Acetylcholine (ACh) is a known modulator of the activity of dopaminergic (DAergic) neurons through the stimulation of nicotinic ACh receptors (nAChRs). Yet, the subunit composition and specific location of nAChRs involved in DA-mediated locomotion remain to be established in vivo. Mice lacking the beta2 subunit of nAChRs (beta2KO) display striking hyperactivity in the open field, which suggests an imbalance in DA neurotransmission. Here, we performed the selective gene rescue of functional beta2*-nAChRs in either the substantia nigra pars compacta (SNpc) or the ventral tegmental area (VTA) of beta2KO mice. SNpc rescued mice displayed normalization of locomotor activity, both in familiar and unfamiliar environments, whereas restoration in the VTA only rescued exploratory behavior. These data demonstrate the dissociation between nigrostriatal and mesolimbic beta2*-nAChRs in regulating unique locomotor functions. In addition, the site-directed knock-down of the beta2 subunit in the SNpc by RNA interference caused hyperactivity in wild-type mice. These findings highlight the crucial interplay of nAChRs over the DA control of spontaneous locomotion.


Asunto(s)
Dopamina/metabolismo , Actividad Motora , Receptor Cross-Talk , Receptores Nicotínicos/metabolismo , Animales , Dopamina/fisiología , Conducta Exploratoria , Hipercinesia/genética , Ratones , Ratones Noqueados , Receptores Nicotínicos/deficiencia , Receptores Nicotínicos/fisiología , Sustancia Negra , Área Tegmental Ventral
19.
Front Neurosci ; 15: 650219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349614

RESUMEN

Traditionally, neuropsychological testing has assessed processing speed and precision, closely related to the ability to perform high-order cognitive tasks. An individual making a decision under time pressure must constantly rebalance its speed to action in order to account for possible errors. A deficit in processing speed appears to be afrequent disorder caused by cerebral damage - but it can be hard to pinpoint the exact cause of the slowdown. It is therefore important to separate the perceptual-motor component of processing speed from the decision-time component. We present a technique to isolate Reaction Times (RTs): a short digital test to assess the decision-making abilities of individuals by gauging their ability to balance between speed and precision. Our hypothesis is that some subjects willaccelerate, and others slow down in the face of the difficulty. This pilot study, conducted on 83 neurotypical adult volunteers, used images stimuli. The test was designed to measure RTs and correctness. After learning release gesture, the subjects were presented with three tasks: a simple Reaction Time task, a Go/No-Go, and a complex Go/No-Go with 2 simultaneous Choices. All three tasks have in common a perceptual component and a motor response. By measuring the 3 reference points requiring attentional and executive processing, while progressively increasing the conceptual complexity of the task, we were able to compare the processing times for different tasks - thus calculating the deceleration specific to the reaction time linked to difficulty. We defined the difficulty coefficient of a task as being the ratio of the group average time of this task minus the base time/average time of the unit task minus the base time. We found that RTs can be broken down into three elementary, uncorrelated components: Reaction Time, Executive Speed, and Reaction to Difficulty (RD). We hypothesized that RD reflects how the subject reacts to difficulty by accelerating (RD < 0) or decelerating (RD > 0). Thus we provide here a first proof of concept: the ability to measure four axes of the speed-precision trade-off inherent in a subject's fundamental decision making: perceptual-motor speed, executive speed, subject accuracy, and reaction to difficulty.

20.
Behav Brain Res ; 399: 113022, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33232678

RESUMEN

We explored here the hypothesis that temporary chronic water restriction in mice affects social behavior, via its action on the density of 5-HT neurons in dorsal and median raphe nuclei (DRN and MRN). For that, we submitted adult C57BL/6 J mice to mild and controlled temporary dehydration, i.e., 6 h of water access every 48 h for 15 days. We investigated their social behavior in a social interaction task known to allow free and reciprocal social contact. Results showed that temporary dehydration increases significantly time spent in social contact and social dominance. It also expands 5-HT neuron density within both DRN and MRN and the behavioral and neuronal plasticity were positively correlated. Our findings suggest that disturbance in 5-HT neurotransmission caused by temporary dehydration stress unbalances choice processes of animals in social context.


Asunto(s)
Conducta Animal/fisiología , Deshidratación , Núcleos del Rafe/citología , Neuronas Serotoninérgicas/citología , Serotonina/metabolismo , Conducta Social , Animales , Recuento de Células , Deshidratación/complicaciones , Deshidratación/metabolismo , Modelos Animales de Enfermedad , Núcleo Dorsal del Rafe/citología , Ratones , Ratones Endogámicos C57BL , Predominio Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA