RESUMEN
BACKGROUND: Most organs are maintained lifelong by resident stem/progenitor cells. During development and regeneration, lineage-specific stem/progenitor cells can contribute to the growth or maintenance of different organs, whereas fully differentiated mature cells have less regenerative potential. However, it is unclear whether vascular endothelial cells (ECs) are also replenished by stem/progenitor cells with EC-repopulating potential residing in blood vessels. It has been reported recently that some EC populations possess higher clonal proliferative potential and vessel-forming capacity compared with mature ECs. Nevertheless, a marker to identify vascular clonal repopulating ECs (CRECs) in murine and human individuals is lacking, and, hence, the mechanism for the proliferative, self-renewal, and vessel-forming potential of CRECs is elusive. METHODS: We analyzed colony-forming, self-renewal, and vessel-forming potential of ABCG2 (ATP binding cassette subfamily G member 2)-expressing ECs in human umbilical vessels. To study the contribution of Abcg2-expressing ECs to vessel development and regeneration, we developed Abcg2CreErt2;ROSA TdTomato mice and performed lineage tracing during mouse development and during tissue regeneration after myocardial infarction injury. RNA sequencing and chromatin methylation chromatin immunoprecipitation followed by sequencing were conducted to study the gene regulation in Abcg2-expressing ECs. RESULTS: In human and mouse vessels, ECs with higher ABCG2 expression (ABCECs) possess higher clonal proliferative potential and in vivo vessel-forming potential compared with mature ECs. These cells could clonally contribute to vessel formation in primary and secondary recipients after transplantation. These features of ABCECs meet the criteria of CRECs. Results from lineage tracing experiments confirm that Abcg2-expressing CRECs (AbcCRECs) contribute to arteries, veins, and capillaries in cardiac tissue development and vascular tissue regeneration after myocardial infarction. Transcriptome and epigenetic analyses reveal that a gene expression signature involved in angiogenesis and vessel development is enriched in AbcCRECs. In addition, various angiogenic genes, such as Notch2 and Hey2, are bivalently modified by trimethylation at the 4th and 27th lysine residue of histone H3 (H3K4me3 and H3K27me3) in AbcCRECs. CONCLUSIONS: These results are the first to establish that a single prospective marker identifies CRECs in mice and human individuals, which holds promise to provide new cell therapies for repair of damaged vessels in patients with endothelial dysfunction.
Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Animales , Humanos , Ratones , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología , Neovascularización Fisiológica , Proliferación Celular , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Regeneración , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Transgénicos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/citología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Linaje de la CélulaRESUMEN
Tyrosine kinase inhibitors (TKIs) are very effective in treating chronic myelogenous leukemia (CML), but primitive, quiescent leukemia stem cells persist as a barrier to the cure. We performed a comprehensive evaluation of metabolic adaptation to TKI treatment and its role in CML hematopoietic stem and progenitor cell persistence. Using a CML mouse model, we found that glycolysis, glutaminolysis, the tricarboxylic acid cycle, and oxidative phosphorylation (OXPHOS) were initially inhibited by TKI treatment in CML-committed progenitors but were restored with continued treatment, reflecting both selection and metabolic reprogramming of specific subpopulations. TKI treatment selectively enriched primitive CML stem cells with reduced metabolic gene expression. Persistent CML stem cells also showed metabolic adaptation to TKI treatment through altered substrate use and mitochondrial respiration maintenance. Evaluation of transcription factors underlying these changes helped detect increased HIF-1 protein levels and activity in TKI-treated stem cells. Treatment with an HIF-1 inhibitor in combination with TKI treatment depleted murine and human CML stem cells. HIF-1 inhibition increased mitochondrial activity and reactive oxygen species (ROS) levels, reduced quiescence, increased cycling, and reduced the self-renewal and regenerating potential of dormant CML stem cells. We, therefore, identified the HIF-1-mediated inhibition of OXPHOS and ROS and maintenance of CML stem cell dormancy and repopulating potential as a key mechanism of CML stem cell adaptation to TKI treatment. Our results identify a key metabolic dependency in CML stem cells persisting after TKI treatment that can be targeted to enhance their elimination.
Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Proteínas Tirosina Quinasas , Ratones , Humanos , Animales , Proteínas Tirosina Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Células Madre Neoplásicas/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Resistencia a AntineoplásicosRESUMEN
BACKGROUND: We examined components of systemic and intestinal renin-angiotensin system on gut barrier permeability, glucose homeostasis, systemic inflammation, and progression of diabetic retinopathy (DR) in human subjects and mice with type 1 diabetes (T1D). METHODS: T1D individual with (n=18) and without (n=20) DR and controls (n=34) were examined for changes in gut-regulated components of the immune system, gut leakage markers (FABP2 [fatty acid binding protein 2] and peptidoglycan), and Ang II (angiotensin II); Akita mice were orally administered a Lactobacillus paracasei (LP) probiotic expressing humanized ACE2 (angiotensin-converting enzyme 2) protein (LP-ACE2) as either a prevention or an intervention. Akita mice with genetic overexpression of humanAce2 by small intestine epithelial cells (Vil-Cre.hAce2KI-Akita) were similarly examined. After 9 months of T1D, circulatory, enteral, and ocular end points were assessed. RESULTS: T1D subjects exhibit elevations in gut-derived circulating immune cells (ILC1 cells) and higher gut leakage markers, which were positively correlated with plasma Ang II and DR severity. The LP-ACE2 prevention cohort and genetic overexpression of intestinal ACE2 preserved barrier integrity, reduced inflammatory response, improved hyperglycemia, and delayed development of DR. Improvements in glucose homeostasis were due to intestinal MasR activation, resulting in a GSK-3ß (glycogen synthase kinase-3 beta)/c-Myc (cellular myelocytomatosis oncogene)-mediated decrease in intestinal glucose transporter expression. In the LP-ACE2 intervention cohort, gut barrier integrity was improved and DR reversed, but no improvement in hyperglycemia was observed. These data support that the beneficial effects of LP-ACE2 on DR are due to the action of ACE2, not improved glucose homeostasis. CONCLUSIONS: Dysregulated systemic and intestinal renin-angiotensin system was associated with worsening gut barrier permeability, gut-derived immune cell activation, systemic inflammation, and progression of DR in human subjects. In Akita mice, maintaining intestinal ACE2 expression prevented and reversed DR, emphasizing the multifaceted role of the intestinal renin-angiotensin system in diabetes and DR.
Asunto(s)
Diabetes Mellitus Tipo 1 , Retinopatía Diabética , Hiperglucemia , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Retinopatía Diabética/prevención & control , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hiperglucemia/complicaciones , Inflamación/metabolismo , Intestino Delgado , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/genética , Sistema Renina-Angiotensina/fisiologíaRESUMEN
This study investigated retinal changes in a Western diet (WD)-induced nonhuman primate model of type 2 diabetes. Rhesus nonhuman primates, aged 15 to 17 years, were fed a high-fat diet (n = 7) for >5 years reflective of the traditional WD. Age-matched controls (n = 6) were fed a standard laboratory primate diet. Retinal fundus photography, optical coherence tomography, autofluorescence imaging, and fluorescein angiography were performed before euthanasia. To assess diabetic retinopathy (DR), eyes were examined using trypsin digests, lipofuscin autofluorescence, and multimarker immunofluorescence on cross-sections and whole mounts. Retinal imaging showed venous engorgement and tortuosity, aneurysms, macular exudates, dot and blot hemorrhages, and a marked increase in fundus autofluorescence. Post-mortem changes included the following: decreased CD31 blood vessel density (P < 0.05); increased acellular capillaries (P < 0.05); increased density of ionized calcium-binding adaptor molecule expressing amoeboid microglia/macrophage; loss of regular distribution in stratum and spacing typical of ramified microglia; and increased immunoreactivity of aquaporin 4 and glial fibrillary acidic protein (P < 0.05). However, rhodopsin immunoreactivity (P < 0.05) in rods and neuronal nuclei antibody-positive neuronal density of 50% (P < 0.05) were decreased. This is the first report of a primate model of DR solely induced by a WD that replicates key features of human DR.
Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Animales , Humanos , Retinopatía Diabética/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Dieta Occidental , Vasos Retinianos/metabolismo , Primates , Tomografía de Coherencia Óptica/métodosRESUMEN
We reported previously that ß-site amyloid precursor protein cleaving enzyme (BACE1) is strongly expressed in the normal retina and that BACE1-/- mice develop pathological phenotypes associated with age-related macular degeneration (AMD). BACE1 expression is increased within the neural retina and retinal pigment epithelium (RPE) in AMD donor eyes suggesting that increased BACE1 is compensatory. We observed that AAV-mediated BACE1 overexpression in the RPE was maintained up to 6 months after AAV1-BACE1 administration. No significant changes in normal mouse visual function or retinal morphology were observed with low-dose vector while the high-dose vector demonstrated some early pathology which regressed with time. No increase in ß-amyloid was observed. BACE1 overexpression in the RPE of the superoxide dismutase 2 knockdown (SOD2 KD) mouse, which exhibits an AMD-like phenotype, prevented loss of retinal function and retinal pathology, and this was sustained out to 6 months. Furthermore, BACE1 overexpression was able to inhibit oxidative stress, microglial changes, and loss of RPE tight junction integrity (all features of AMD) in SOD2 KD mice. In conclusion, BACE1 plays a key role in retina/RPE homeostasis, and BACE1 overexpression offers a novel therapeutic target in the treatment of AMD.
Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Degeneración Macular , Animales , Ratones , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Degeneración Macular/genética , Degeneración Macular/prevención & control , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismoRESUMEN
AIMS/HYPOTHESIS: Hyper-reflective crystalline deposits found in retinal lesions have been suggested to predict the progression of diabetic retinopathy, but the nature of these structures remains unknown. METHODS: Scanning electron microscopy and immunohistochemistry were used to identify cholesterol crystals (CCs) in human donor, pig and mouse tissue. The effects of CCs were analysed in bovine retinal endothelial cells in vitro and in db/db mice in vivo using quantitative RT-PCR, bulk RNA sequencing, and cell death and permeability assays. Cholesterol homeostasis was determined using 2H2O and 2H7-cholesterol. RESULTS: We identified hyper-reflective crystalline deposits in human diabetic retina as CCs. Similarly, CCs were found in the retina of a diabetic mouse model and a high-cholesterol diet-fed pig model. Cell culture studies demonstrated that treatment of retinal cells with CCs can recapitulate all major pathogenic mechanisms leading to diabetic retinopathy, including inflammation, cell death and breakdown of the blood-retinal barrier. Fibrates, statins and α-cyclodextrin effectively dissolved CCs present in in vitro models of diabetic retinopathy, and prevented CC-induced endothelial pathology. Treatment of a diabetic mouse model with α-cyclodextrin reduced cholesterol levels and CC formation in the retina, and prevented diabetic retinopathy. CONCLUSIONS/INTERPRETATION: We established that cholesterol accumulation and CC formation are a unifying pathogenic mechanism in the development of diabetic retinopathy.
Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , alfa-Ciclodextrinas , Animales , Bovinos , Ratones , Humanos , Porcinos , Retinopatía Diabética/metabolismo , alfa-Ciclodextrinas/efectos adversos , alfa-Ciclodextrinas/metabolismo , Células Endoteliales/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Modelos Animales de Enfermedad , Colesterol/metabolismoRESUMEN
The metabolically active retina obtains essential lipids by endogenous biosynthesis and from the systemic circulation. Clinical studies provide limited and sometimes conflicting evidence as to the relationships between circulating lipid levels and the development and progression of diabetic retinopathy in people with diabetes. Cardiovascular-system-focused clinical trials that also evaluated some retinal outcomes demonstrate the potential protective power of lipid-lowering therapies in diabetic retinopathy and some trials with ocular primary endpoints are in progress. Although triacylglycerol-lowering therapies with fibrates afforded some protection against diabetic retinopathy, the effect was independent of changes in traditional blood lipid classes. While systemic LDL-cholesterol lowering with statins did not afford protection against diabetic retinopathy in most clinical trials, and none of the trials focused on retinopathy as the main outcome, data from very large database studies suggest the possible effectiveness of statins. Potential challenges in these studies are discussed, including lipid-independent effects of fibrates and statins, modified lipoproteins and retinal-specific effects of lipid-lowering drugs. Dysregulation of retinal-specific cholesterol metabolism leading to retinal cholesterol accumulation and potential formation of cholesterol crystals are also addressed.
Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Colesterol , Diabetes Mellitus/tratamiento farmacológico , Retinopatía Diabética/tratamiento farmacológico , Ácidos Fíbricos/uso terapéutico , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Lípidos/química , Retina/fisiopatologíaRESUMEN
The role of angiotensin converting enzyme 2 has expanded from regulating the renin angiotensin system to regulating intestinal amino acid homeostasis and the gut microbiome. Recently, angiotensin converting enzyme 2 was identified as a primary receptor for severe acute respiratory syndrome coronaviruses 1 and 2 being expressed in multiple tissues including the luminal surface of the gut. In this brief perspective, we examine the role of angiotensin converting enzyme 2 as the receptor for severe acute respiratory syndrome coronavirus 2 and the impact of coronavirus disease 19 infection on the gut microbiome and on the gut epithelium.
Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/enzimología , Gastroenteritis/enzimología , Microbioma Gastrointestinal , Mucosa Intestinal/enzimología , Receptores Virales/metabolismo , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Antivirales/uso terapéutico , COVID-19/microbiología , COVID-19/virología , Heces/microbiología , Heces/virología , Gastroenteritis/tratamiento farmacológico , Gastroenteritis/microbiología , Gastroenteritis/virología , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Mucosa Intestinal/virología , Sistema Renina-Angiotensina , SARS-CoV-2/efectos de los fármacos , Internalización del Virus , Tratamiento Farmacológico de COVID-19RESUMEN
Age-related macular degeneration (AMD) is a complex disease with increasing numbers of individuals being afflicted and treatment modalities limited. There are strong interactions between diet, age, the metabolome, and gut microbiota, and all of these have roles in the pathogenesis of AMD. Communication axes exist between the gut microbiota and the eye, therefore, knowing how the microbiota influences the host metabolism during aging could guide a better understanding of AMD pathogenesis. While considerable experimental evidence exists for a diet-gut-eye axis from murine models of human ocular diseases, human diet-microbiome-metabolome studies are needed to elucidate changes in the gut microbiome at the taxonomic and functional levels that are functionally related to ocular pathology. Such studies will reveal new ways to diminish risk for progression of- or incidence of- AMD. Current data suggest that consuming diets rich in dark fish, fruits, vegetables, and low in glycemic index are most retina-healthful during aging.
Asunto(s)
Microbioma Gastrointestinal , Degeneración Macular , Microbiota , Humanos , Ratones , Animales , Metaboloma , Dieta , Degeneración Macular/metabolismoRESUMEN
ACE2 (angiotensin-converting enzyme 2) has a multiplicity of physiological roles that revolve around its trivalent function: a negative regulator of the renin-angiotensin system, facilitator of amino acid transport, and the severe acute respiratory syndrome-coronavirus (SARS-CoV) and SARS-CoV-2 receptor. ACE2 is widely expressed, including, in the lungs, cardiovascular system, gut, kidneys, central nervous system, and adipose tissue. ACE2 has recently been identified as the SARS-CoV-2 receptor, the infective agent responsible for coronavirus disease 2019, providing a critical link between immunity, inflammation, ACE2, and cardiovascular disease. Although sharing a close evolutionary relationship with SARS-CoV, the receptor-binding domain of SARS-CoV-2 differs in several key amino acid residues, allowing for stronger binding affinity with the human ACE2 receptor, which may account for the greater pathogenicity of SARS-CoV-2. The loss of ACE2 function following binding by SARS-CoV-2 is driven by endocytosis and activation of proteolytic cleavage and processing. The ACE2 system is a critical protective pathway against heart failure with reduced and preserved ejection fraction including, myocardial infarction and hypertension, and against lung disease and diabetes mellitus. The control of gut dysbiosis and vascular permeability by ACE2 has emerged as an essential mechanism of pulmonary hypertension and diabetic cardiovascular complications. Recombinant ACE2, gene-delivery of Ace2, Ang 1-7 analogs, and Mas receptor agonists enhance ACE2 action and serve as potential therapies for disease conditions associated with an activated renin-angiotensin system. rhACE2 (recombinant human ACE2) has completed clinical trials and efficiently lowered or increased plasma angiotensin II and angiotensin 1-7 levels, respectively. Our review summarizes the progress over the past 20 years, highlighting the critical role of ACE2 as the novel SARS-CoV-2 receptor and as the negative regulator of the renin-angiotensin system, together with implications for the coronavirus disease 2019 pandemic and associated cardiovascular diseases.
Asunto(s)
Betacoronavirus/fisiología , Enfermedades Cardiovasculares , Infecciones por Coronavirus , Pandemias , Peptidil-Dipeptidasa A/fisiología , Neumonía Viral , Sistema Renina-Angiotensina/fisiología , Proteína ADAM17/fisiología , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/fisiopatología , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/virología , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/fisiopatología , Humanos , Terapia Molecular Dirigida , Neumonía Viral/complicaciones , Neumonía Viral/metabolismo , Neumonía Viral/fisiopatología , Neumonía Viral/virología , Receptores Virales/fisiología , SARS-CoV-2 , Acoplamiento Viral , Tratamiento Farmacológico de COVID-19RESUMEN
The gut is a well-established route of infection and target for viral damage by SARS-CoV-2. This is supported by the clinical observation that about half of COVID-19 patients exhibit gastrointestinal (GI) complications. We aimed to investigate whether the analysis of plasma could provide insight into gut barrier dysfunction in patients with COVID-19 infection. Plasma samples of COVID-19 patients (n = 146) and healthy individuals (n = 47) were collected during hospitalization and routine visits. Plasma microbiome was analyzed using 16S rRNA sequencing and gut permeability markers including fatty acid binding protein 2 (FABP2), peptidoglycan (PGN), and lipopolysaccharide (LPS) in both patient cohorts. Plasma samples of both cohorts contained predominately Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria. COVID-19 subjects exhibit significant dysbiosis (p = 0.001) of the plasma microbiome with increased abundance of Actinobacteria spp. (p = 0.0332), decreased abundance of Bacteroides spp. (p = 0.0003), and an increased Firmicutes:Bacteroidetes ratio (p = 0.0003) compared to healthy subjects. The concentration of the plasma gut permeability marker FABP2 (p = 0.0013) and the gut microbial antigens PGN (p < 0.0001) and LPS (p = 0.0049) were significantly elevated in COVID-19 patients compared to healthy subjects. These findings support the notion that the intestine may represent a source for bacteremia and contribute to worsening COVID-19 outcomes. Therapies targeting the gut and prevention of gut barrier defects may represent a strategy to improve outcomes in COVID-19 patients.
Asunto(s)
Actinobacteria , COVID-19 , Microbioma Gastrointestinal , Microbiota , Actinobacteria/genética , Bacterias/genética , Disbiosis/microbiología , Heces/microbiología , Firmicutes/genética , Microbioma Gastrointestinal/genética , Humanos , Lipopolisacáridos , Peptidoglicano , ARN Ribosómico 16S/genética , SARS-CoV-2RESUMEN
AIMS/HYPOTHESIS: The circadian clock influences both diabetes and immunity. Our goal in this study was to characterise more thoroughly the circadian patterns of immune cell populations and cytokines that are particularly relevant to the immune pathology of type 1 diabetes and thus fill in a current gap in our understanding of this disease. METHODS: Ten individuals with established type 1 diabetes (mean disease duration 11 years, age 18-40 years, six female) participated in a circadian sampling protocol, each providing six blood samples over a 24 h period. RESULTS: Daily ranges of population frequencies were sometimes large and possibly clinically significant. Several immune populations, such as dendritic cells, CD4 and CD8 T cells and their effector memory subpopulations, CD4 regulatory T cells, B cells and cytokine IL-6, exhibited statistically significant circadian rhythmicity. In a comparison with historical healthy control individuals, but using shipped samples, we observed that participants with type 1 diabetes had statistically significant phase shifts occurring in the time of peak occurrence of B cells (+4.8 h), CD4 and CD8 T cells (~ +5 h) and their naive and effector memory subsets (~ +3.3 to +4.5 h), and regulatory T cells (+4.1 h). An independent streptozotocin murine experiment confirmed the phase shifting of CD8 T cells and suggests that circadian dysrhythmia in type 1 diabetes might be an effect and not a cause of the disease. CONCLUSIONS/INTERPRETATION: Future efforts investigating this newly described aspect of type 1 diabetes in human participants are warranted. Peripheral immune populations should be measured near the same time of day in order to reduce circadian-related variation.
Asunto(s)
Trastornos Cronobiológicos/inmunología , Ritmo Circadiano/inmunología , Diabetes Mellitus Tipo 1/inmunología , Sistema Inmunológico/fisiología , Adolescente , Adulto , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Relojes Circadianos/genética , Células Dendríticas/inmunología , Femenino , Citometría de Flujo , Humanos , Interleucina-6/sangre , Recuento de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Adulto JovenRESUMEN
AIMS/HYPOTHESIS: Hypothalamic inflammation and sympathetic nervous system hyperactivity are hallmark features of the metabolic syndrome and type 2 diabetes. Hypothalamic inflammation may aggravate metabolic and immunological pathologies due to extensive sympathetic activation of peripheral tissues. Loss of somatostatinergic (SST) neurons may contribute to enhanced hypothalamic inflammation. METHODS: The present data show that leptin receptor-deficient (db/db) mice exhibit reduced hypothalamic SST neurons, particularly in the periventricular nucleus. We model this finding, using adeno-associated virus delivery of diphtheria toxin subunit A (DTA) driven by an SST-cre system to deplete these neurons in Sstcre/gfp mice (SST-DTA). RESULTS: SST-DTA mice exhibit enhanced hypothalamic c-Fos expression and brain inflammation as demonstrated by microglial and astrocytic activation. Bone marrow from SST-DTA mice undergoes skewed haematopoiesis, generating excess granulocyte-monocyte progenitors and increased proinflammatory (C-C chemokine receptor type 2; CCR2hi) monocytes. SST-DTA mice exhibited a 'diabetic retinopathy-like' phenotype: reduced visual function by optokinetic response (0.4 vs 0.25 cycles/degree; SST-DTA vs control mice); delayed electroretinogram oscillatory potentials; and increased percentages of retinal monocytes. Finally, mesenteric visceral adipose tissue from SST-DTA mice was resistant to catecholamine-induced lipolysis, displaying 50% reduction in isoprenaline (isoproterenol)-induced lipolysis compared with control littermates. Importantly, hyperglycaemia was not observed in SST-DTA mice. CONCLUSIONS/INTERPRETATION: The isolated reduction in hypothalamic SST neurons was able to recapitulate several hallmark features of type 2 diabetes in disease-relevant tissues.
Asunto(s)
Tejido Adiposo/metabolismo , Médula Ósea/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Retina/metabolismo , Somatostatina/metabolismo , Animales , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Toxina Diftérica/toxicidad , Electrorretinografía , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
AIMS/HYPOTHESIS: Homo sapiens evolved under conditions of intermittent food availability and prolonged fasting between meals. Periods of fasting are important for recovery from meal-induced oxidative and metabolic stress, and tissue repair. Constant high energy-density food availability in present-day society contributes to the pathogenesis of chronic diseases, including diabetes and its complications, with intermittent fasting (IF) and energy restriction shown to improve metabolic health. We have previously demonstrated that IF prevents the development of diabetic retinopathy in a mouse model of type 2 diabetes (db/db); however the mechanisms of fasting-induced health benefits and fasting-induced risks for individuals with diabetes remain largely unknown. Sirtuin 1 (SIRT1), a nutrient-sensing deacetylase, is downregulated in diabetes. In this study, the effect of SIRT1 stimulation by IF, fasting-mimicking cell culture conditions (FMC) or pharmacological treatment using SRT1720 was evaluated on systemic and retinal metabolism, systemic and retinal inflammation and vascular and bone marrow damage. METHODS: The effects of IF were modelled in vivo using db/db mice and in vitro using bovine retinal endothelial cells or rat retinal neuroglial/precursor R28 cell line serum starved for 24 h. mRNA expression was analysed by quantitative PCR (qPCR). SIRT1 activity was measured via histone deacetylase activity assay. NR1H3 (also known as liver X receptor alpha [LXRα]) acetylation was measured via western blot analysis. RESULTS: IF increased Sirt1 mRNA expression in mouse liver and retina when compared with non-fasted animals. IF also increased SIRT1 activity eightfold in mouse retina while FMC increased SIRT1 activity and expression in retinal endothelial cells when compared with control. Sirt1 expression was also increased twofold in neuronal retina progenitor cells (R28) after FMC treatment. Moreover, FMC led to SIRT1-mediated LXRα deacetylation and subsequent 2.4-fold increase in activity, as measured by increased mRNA expression of the genes encoding ATP-binding cassette transporter (Abca1 and Abcg1). These changes were reduced when retinal endothelial cells expressing a constitutively acetylated LXRα mutant were tested. Increased SIRT1/LXR/ABC-mediated cholesterol export resulted in decreased retinal endothelial cell cholesterol levels. Direct activation of SIRT1 by SRT1720 in db/db mice led to a twofold reduction of diabetes-induced inflammation in the retina and improved diabetes-induced visual function impairment, as measured by electroretinogram and optokinetic response. In the bone marrow, there was prevention of diabetes-induced myeloidosis and decreased inflammatory cytokine expression. CONCLUSIONS/INTERPRETATION: Taken together, activation of SIRT1 signalling by IF or through pharmacological activation represents an effective therapeutic strategy that provides a mechanistic link between the advantageous effects associated with fasting regimens and prevention of microvascular and bone marrow dysfunction in diabetes.
Asunto(s)
Angiopatías Diabéticas/prevención & control , Ayuno/fisiología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Animales , Bovinos , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Células Cultivadas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/terapia , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/metabolismo , Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Hipoglucemiantes/farmacología , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas , Retina/efectos de los fármacos , Retina/patología , Neuronas Retinianas/efectos de los fármacos , Neuronas Retinianas/metabolismo , Neuronas Retinianas/patología , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirtuina 1/efectos de los fármacos , Sirtuina 1/genética , Sirtuina 1/metabolismoRESUMEN
BACKGROUND: Myocardial infarction (MI) triggers myelopoiesis, resulting in heightened production of neutrophils. However, the mechanisms that sustain their production and recruitment to the injured heart are unclear. METHODS: Using a mouse model of the permanent ligation of the left anterior descending artery and flow cytometry, we first characterized the temporal and spatial effects of MI on different myeloid cell types. We next performed global transcriptome analysis of different cardiac cell types within the infarct to identify the drivers of the acute inflammatory response and the underlying signaling pathways. Using a combination of genetic and pharmacological strategies, we identified the sequelae of events that led to MI-induced myelopoiesis. Cardiac function was assessed by echocardiography. The association of early indexes of neutrophilia with major adverse cardiovascular events was studied in a cohort of patients with acute MI. RESULTS: Induction of MI results in rapid recruitment of neutrophils to the infarct, where they release specific alarmins, S100A8 and S100A9. These alarmins bind to the Toll-like receptor 4 and prime the nod-like receptor family pyrin domain-containing 3 inflammasome in naïve neutrophils and promote interleukin-1ß secretion. The released interleukin-1ß interacts with its receptor (interleukin 1 receptor type 1) on hematopoietic stem and progenitor cells in the bone marrow and stimulates granulopoiesis in a cell-autonomous manner. Genetic or pharmacological strategies aimed at disruption of S100A8/A9 and their downstream signaling cascade suppress MI-induced granulopoiesis and improve cardiac function. Furthermore, in patients with acute coronary syndrome, higher neutrophil count on admission and after revascularization correlates positively with major adverse cardiovascular disease outcomes. CONCLUSIONS: Our study provides novel evidence for the primary role of neutrophil-derived alarmins (S100A8/A9) in dictating the nature of the ensuing inflammatory response after myocardial injury. Therapeutic strategies aimed at disruption of S100A8/A9 signaling or their downstream mediators (eg, nod-like receptor family pyrin domain-containing 3 inflammasome, interleukin-1ß) in neutrophils suppress granulopoiesis and may improve cardiac function in patients with acute coronary syndrome.
Asunto(s)
Calgranulina A/metabolismo , Granulocitos/metabolismo , Infarto del Miocardio/sangre , Neutrófilos/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , RatonesRESUMEN
The molecular signaling cascades that regulate angiogenesis and microvascular remodeling are fundamental to normal development, healthy physiology, and pathologies such as inflammation and cancer. Yet quantifying such complex, fractally branching vascular patterns remains difficult. We review application of NASA's globally available, freely downloadable VESsel GENeration (VESGEN) Analysis software to numerous examples of 2D vascular trees, networks, and tree-network composites. Upon input of a binary vascular image, automated output includes informative vascular maps and quantification of parameters such as tortuosity, fractal dimension, vessel diameter, area, length, number, and branch point. Previous research has demonstrated that cytokines and therapeutics such as vascular endothelial growth factor, basic fibroblast growth factor (fibroblast growth factor-2), transforming growth factor-beta-1, and steroid triamcinolone acetonide specify unique "fingerprint" or "biomarker" vascular patterns that integrate dominant signaling with physiological response. In vivo experimental examples described here include vascular response to keratinocyte growth factor, a novel vessel tortuosity factor; angiogenic inhibition in humanized tumor xenografts by the anti-angiogenesis drug leronlimab; intestinal vascular inflammation with probiotic protection by Saccharomyces boulardii, and a workflow programming of vascular architecture for 3D bioprinting of regenerative tissues from 2D images. Microvascular remodeling in the human retina is described for astronaut risks in microgravity, vessel tortuosity in diabetic retinopathy, and venous occlusive disease.
Asunto(s)
Proteínas Angiogénicas/metabolismo , Arterias/anatomía & histología , Arterias/metabolismo , Modelos Anatómicos , Modelos Cardiovasculares , Neovascularización Fisiológica , Transducción de Señal , Remodelación Vascular , Proteínas Angiogénicas/genética , Animales , Astronautas , Bioimpresión , Simulación por Computador , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Fractales , Regulación de la Expresión Génica , Humanos , Neovascularización Patológica , Neovascularización Fisiológica/genética , Impresión Tridimensional , Oclusión de la Vena Retiniana/metabolismo , Oclusión de la Vena Retiniana/patología , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Transducción de Señal/genética , Programas Informáticos , Remodelación Vascular/genética , IngravidezRESUMEN
RATIONALE: There is incomplete knowledge of the impact of bone marrow cells on the gut microbiome and gut barrier function. OBJECTIVE: We postulated that diabetes mellitus and systemic ACE2 (angiotensin-converting enzyme 2) deficiency would synergize to adversely impact both the microbiome and gut barrier function. METHODS AND RESULTS: Bacterial 16S rRNA sequencing and metatranscriptomic analysis were performed on fecal samples from wild-type, ACE2-/y, Akita (type 1 diabetes mellitus), and ACE2-/y-Akita mice. Gut barrier integrity was assessed by immunofluorescence, and bone marrow cell extravasation into the small intestine was evaluated by flow cytometry. In the ACE2-/y-Akita or Akita mice, the disrupted barrier was associated with reduced levels of myeloid angiogenic cells, but no increase in inflammatory monocytes was observed within the gut parenchyma. Genomic and metatranscriptomic analysis of the microbiome of ACE2-/y-Akita mice demonstrated a marked increase in peptidoglycan-producing bacteria. When compared with control cohorts treated with saline, intraperitoneal administration of myeloid angiogenic cells significantly decreased the microbiome gene expression associated with peptidoglycan biosynthesis and restored epithelial and endothelial gut barrier integrity. Also indicative of diabetic gut barrier dysfunction, increased levels of peptidoglycan and FABP-2 (intestinal fatty acid-binding protein 2) were observed in plasma of human subjects with type 1 diabetes mellitus (n=21) and type 2 diabetes mellitus (n=23) compared with nondiabetic controls (n=23). Using human retinal endothelial cells, we determined that peptidoglycan activates a noncanonical TLR-2 (Toll-like receptor 2) associated MyD88 (myeloid differentiation primary response protein 88)-ARNO (ADP-ribosylation factor nucleotide-binding site opener)-ARF6 (ADP-ribosylation factor 6) signaling cascade, resulting in destabilization of p120-catenin and internalization of VE-cadherin as a mechanism of deleterious impact of peptidoglycan on the endothelium. CONCLUSIONS: We demonstrate for the first time that the defect in gut barrier function and dysbiosis in ACE2-/y-Akita mice can be favorably impacted by exogenous administration of myeloid angiogenic cells.
Asunto(s)
Bacterias/metabolismo , Trasplante de Médula Ósea , Permeabilidad Capilar , Diabetes Mellitus Tipo 2/cirugía , Microbioma Gastrointestinal , Mucosa Intestinal/irrigación sanguínea , Mucosa Intestinal/microbiología , Intestino Delgado/irrigación sanguínea , Intestino Delgado/microbiología , Neovascularización Fisiológica , Peptidil-Dipeptidasa A/deficiencia , Factor 6 de Ribosilación del ADP , Uniones Adherentes/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Disbiosis , Humanos , Mediadores de Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestino Delgado/enzimología , Intestino Delgado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Peptidoglicano/metabolismo , Peptidil-Dipeptidasa A/genética , Recuperación de la FunciónRESUMEN
PURPOSE: Previously, we reported that the intravenous injection of bone marrow-derived cells (BMDC) infected with lentivirus expressing the human RPE65 gene resulted in the programming of BMDC to promote visual recovery in a mouse model of age-related macular degeneration (AMD). The aim of this study was to characterize the spatial and temporal recruitment of these programmed BMDC to the retinal pigment epithelial (RPE) layer. METHODS: C57BL/6J female mice received a subretinal injection of AAV1-SOD2 ribozyme to knock down (KD) superoxide dismutase 2 (SOD2) and induce AMD-like pathology. BMDC were isolated from GFP+ mice and infected with a lentivirus expressing RPE65. One month after SOD2 KD, fifty thousand GFP+ RPE65-BMDC were injected in the mouse tail vein. Animals were terminated at different time points up to 60 min following cell administration, and localization of GFP+ cells was determined by fluorescence microscopy of neural retina and RPE flat mounts and tissue sections. RESULTS: GFP+ RPE65- BMDC were observed in SOD2 KD neural retina and RPE as early as 1 min following administration. With increasing time, the number of cells in the neural retina decreased, while those in the RPE increased. While the number of cells in peripheral and central retina remained similar at each time point, the number of BMDC recruited to the central RPE increased in a time-dependent manner up to a maximum by 60 min post administration. Immunohistochemistry of cross-sections of the RPE layer confirmed the incorporation of donor GFP+ BMDC into the RPE layer and that these GFP+ human RPE65 expressing cells co-localized with murine RPE65. No GFP+ cells were observed in the neural retina or RPE layer of normal uninjured control eyes. CONCLUSIONS: Our study shows that systemically administered GFP+ RPE65-BMDC can reach the retina within minutes and that the majority of these BMDC are recruited to the injured RPE layer by 60 min post injection.
Asunto(s)
Médula Ósea , Degeneración Macular , Animales , Femenino , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL , Retina , Epitelio Pigmentado de la RetinaRESUMEN
Numerous studies demonstrate the essential role of mesenchymal stem cells (MSCs) in the treatment of metabolic and inflammatory diseases, as these cells are known to modulate humoral and cellular immune responses. In this manuscript, we efficiently present two novel approaches to obtain MSCs from equine or human sources. In our first approach, we used electro-acupuncture as previously described by our group to mobilize MSCs into the peripheral blood of horses. For equine MSC collection, culture, and expansion, we used the Miltenyi Biotec CliniMACS Prodigy system of automated cell manufacturing. Using this system, we were able to generate appoximately 100 MSC colonies that exhibit surface marker expression of CD105 (92%), CD90 (85%), and CD73 (88%) within seven days of blood collection. Our second approach utilized the iPSC embryoid bodies from healthy or diabetic subjects where the iPSCs were cultured in standard media (endothelial + mesoderm basal media). After 21 days, the cells were FACS sorted and exhibited surface marker expression of CD105, CD90, and CD73. Both the equine cells and the human iPSC-derived MSCs were able to differentiate into adipogenic, osteogenic, and chondrogenic lineages. Both methods described simple and highly efficient methods to produce cells with surface markers phenotypically considered as MSCs and may, in the future, facilitate rapid production of MSCs with therapeutic potential.
Asunto(s)
Técnicas de Cultivo de Célula , Separación Celular/métodos , Células Madre Mesenquimatosas/citología , Animales , Antígenos CD/metabolismo , Biomarcadores , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Caballos , Inmunofenotipificación , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismoRESUMEN
Vascular endothelial growth factor (VEGF), a key angiogenic and permeability factor, plays an important role in new blood vessel formation. However, abnormal VEGF-induced VEGFR2 signaling leads to hyperpermeability. We have shown previously that Rap1, best known for promoting cell adhesion and vessel stability, is a critical regulator of VEGFR2-mediated angiogenic and shear-stress EC responses. To determine the role of Rap1 role in endothelial barrier dynamics, we examined vascular permeability in EC-specific Rap1A- and Rap1B-knockout mice, cell-cell junction remodeling and EC monolayer resistivity in Rap1-deficient ECs under basal, inflammatory or elevated VEGF conditions. Deletion of either Rap1 isoform impaired de novo adherens junction (AJ) formation and recovery from LPS-induced barrier disruption in vivo However, only Rap1A deficiency increased permeability in ECs and lung vessels. Interestingly, Rap1B deficiency attenuated VEGF-induced permeability in vivo and AJ remodeling in vitro Therefore, only Rap1A is required for the maintenance of normal vascular integrity. Importantly, Rap1B is the primary isoform essential for normal VEGF-induced EC barrier dissolution. Deletion of either Rap1 isoform protected against hyper permeability in the STZ-induced diabetes model, suggesting clinical implications for targeting Rap1 in pathologies with VEGF-induced hyperpermeability.