Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Psychiatry ; 28(5): 2136-2147, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36973347

RESUMEN

Maternal immune dysregulation is a prenatal risk factor for autism spectrum disorder (ASD). Importantly, a clinically relevant connection exists between inflammation and metabolic stress that can result in aberrant cytokine signaling and autoimmunity. In this study we examined the potential for maternal autoantibodies (aAbs) to disrupt metabolic signaling and induce neuroanatomical changes in the brains of exposed offspring. To accomplish this, we developed a model of maternal aAb exposure in rats based on the clinical phenomenon of maternal autoantibody-related ASD (MAR-ASD). Following confirmation of aAb production in rat dams and antigen-specific immunoglobulin G (IgG) transfer to offspring, we assessed offspring behavior and brain structure longitudinally. MAR-ASD rat offspring displayed a reduction in pup ultrasonic vocalizations and a pronounced deficit in social play behavior when allowed to freely interact with a novel partner. Additionally, longitudinal in vivo structural magnetic resonance imaging (sMRI) at postnatal day 30 (PND30) and PND70, conducted in a separate cohort of animals, revealed sex-specific differences in total and regional brain volume. Treatment-specific effects by region appeared to converge on midbrain and cerebellar structures in MAR-ASD offspring. Simultaneously, in vivo 1H magnetic resonance spectroscopy (1H-MRS) data were collected to examine brain metabolite levels in the medial prefrontal cortex. Results showed that MAR-ASD offspring displayed decreased levels of choline-containing compounds and glutathione, accompanied by increased taurine compared to control animals. Overall, we found that rats exposed to MAR-ASD aAbs present with alterations in behavior, brain structure, and neurometabolites; reminiscent of findings observed in clinical ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Efectos Tardíos de la Exposición Prenatal , Humanos , Masculino , Embarazo , Femenino , Ratas , Animales , Trastorno Autístico/metabolismo , Trastorno del Espectro Autista/metabolismo , Autoanticuerpos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Encéfalo/metabolismo , Exposición Materna
2.
Biol Psychiatry ; 92(6): 460-469, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35773097

RESUMEN

Late adolescence is a period of dynamic change in the brain as humans learn to navigate increasingly complex environments. In particular, prefrontal cortical (PFC) regions undergo extensive remodeling as the brain is fine-tuned to orchestrate cognitive control over attention, reasoning, and emotions. Late adolescence also presents a uniquely vulnerable period as neurodevelopmental illnesses, such as schizophrenia, become evident and worsen into young adulthood. Challenges in early development, including prenatal exposure to infection, may set the stage for a cascade of maladaptive events that ultimately result in aberrant PFC connectivity and function before symptoms emerge. A growing body of research suggests that activation of the mother's immune system during pregnancy may act as a disease primer, in combination with other environmental and genetic factors, contributing to an increased risk of neurodevelopmental disorders, including schizophrenia. Animal models provide an invaluable opportunity to examine the course of brain and behavioral changes in offspring exposed to maternal immune activation (MIA). Although the vast majority of MIA research has been carried out in rodents, here we highlight the translational utility of the nonhuman primate (NHP) as a model species more closely related to humans in PFC structure and function. In this review, we consider the protracted period of brain and behavioral maturation in the NHP, describe emerging findings from MIA NHP offspring in the context of rodent preclinical models, and lastly explore the translational relevance of the NHP MIA model to expand understanding of the etiology and developmental course of PFC pathology in schizophrenia.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Esquizofrenia , Adulto , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Femenino , Humanos , Poli I-C , Corteza Prefrontal/patología , Embarazo , Primates , Adulto Joven
3.
Brain Res ; 1747: 147030, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32745658

RESUMEN

The APOE Ɛ4 genotype is the most prevalent genetic risk for Alzheimer's disease (AD). Women carriers of Ɛ4 have higher risk for an early onset of AD than men. Human imaging studies suggest apolipoprotein Ɛ4 may affect brain structures associated with cognitive decline in AD many years before disease onset. It was hypothesized that female APOE Ɛ4 carriers would present with decreased cognitive function and neuroradiological evidence of early changes in brain structure and function as compared to male carriers. Six-month old wild-type (WT) and human APOE Ɛ4 knock-in (TGRA8960), male and female Sprague Dawley rats were studied for changes in brain structure using voxel-based morphometry, alteration in white and gray matter microarchitecture using diffusion weighted imaging with indices of anisotropy, and functional coupling using resting state BOLD functional connectivity. Images from each modality were registered to, and analyzed, using a 3D MRI rat atlas providing site-specific data on over 168 different brain areas. Quantitative volumetric analysis revealed areas involved in memory and arousal were significantly different between Ɛ4 and wild-type (WT) females, with few differences between male genotypes. Diffusion weighted imaging showed few differences between WT and Ɛ4 females, while male genotypes showed significant different measures in fractional anisotropy and apparent diffusion coefficient. Resting state functional connectivity showed Ɛ4 females had greater connectivity between areas involved in cognition, emotion, and arousal compared to WT females, with male Ɛ4 showing few differences from controls. Interestingly, male Ɛ4 showed increased anxiety and decreased performance in spatial and episodic memory tasks compared to WT males, with female genotypes showing little difference across behavioral tests. The sex differences in behavior and diffusion weighted imaging suggest male carriers of the Ɛ4 allele may be more vulnerable to cognitive and emotional complications compared to female carriers early in life. Conversely, the data may also suggest that female carriers are more resilient to cognitive/emotional problems at this stage of life perhaps due to altered brain volumes and enhanced connectivity.


Asunto(s)
Apolipoproteína E4/genética , Encéfalo/diagnóstico por imagen , Animales , Nivel de Alerta/fisiología , Cognición/fisiología , Emociones/fisiología , Femenino , Técnicas de Sustitución del Gen , Genotipo , Imagen por Resonancia Magnética , Masculino , Memoria/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Caracteres Sexuales
4.
Alzheimers Dement (Amst) ; 12(1): e12088, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088894

RESUMEN

INTRODUCTION: Novel sensors were developed to detect exhaled volatile organic compounds to aid in the diagnosis of mild cognitive impairment associated with early stage Alzheimer's disease (AD). The sensors were sensitive to a rat model that combined the human apolipoprotein E (APOE)4 gene with aging and the Western diet. METHODS: Gas sensors fabricated from molecularly imprinted polymer-graphene were engineered to react with alkanes and small fatty acids associated with lipid peroxidation. With a detection sensitivity in parts per trillion the sensors were tested against the breath of wild-type and APOE4 male rats. Resting state BOLD functional connectivity was used to assess hippocampal function. RESULTS: Only APOE4 rats, and not wild-type controls, tested positive to several small hydrocarbons and presented with reduced functional coupling in hippocampal circuitry. DISCUSSION: These results are proof-of-concept toward the development of sensors that can be used as breath detectors in the diagnosis, prognosis, and treatment of presymptomatic AD.

5.
Neuroscience ; 398: 88-101, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30550747

RESUMEN

The present study was designed to use blood-oxygen-level dependent (BOLD) imaging to "fingerprint" the change in activity in response to oxycodone (OXY) in drug naïve rats before and after repeated exposure to OXY. It was hypothesized that repeated exposure to OXY would initiate adaptive changes in brain organization that would be reflected in an altered response to opioid exposure. Male rats exposed to OXY repeatedly showed conditioned place preference, evidence of drug-seeking behavior and putative neuroadaptation. As these studies were done on awake rats we discovered it was not possible to image rats continuously exposed to OXY due to motion artifact judged to be withdrawal while in the scanner. To circumvent this problem manganese-enhanced MRI (MEMRI) was used to map the distributed integrated activity pattern resulting from continuous OXY exposure. Rats were administered OXY (2.5 mg/kg, i.p.) during image acquisition and changes in BOLD signal intensity were recorded and the activation and deactivation of integrated neural circuits involved in olfaction and motivation were identified. Interestingly, the circuitry of the mesencephalic dopaminergic system showed little activity to the first exposure of OXY. In the MEMRI study, rats received OXY treatments (2.5 mg/kg, twice daily) for four consecutive days following intraventricular MnCl2. Under isoflurane anesthesia, T1-weighted images were acquired and subsequently analyzed showing activity in the forebrain limbic system, ventral striatum, accumbens, amygdala and hippocampus. These results show brain activity is markedly different when OXY is presented to drug naïve rats versus rats with prior, repeated exposure to drug.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Oxicodona/administración & dosificación , Psicotrópicos/administración & dosificación , Animales , Encéfalo/fisiopatología , Mapeo Encefálico , Circulación Cerebrovascular/efectos de los fármacos , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiopatología , Oxígeno/sangre , Ratas Sprague-Dawley , Recompensa , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología , Trastornos Relacionados con Sustancias/diagnóstico por imagen , Trastornos Relacionados con Sustancias/fisiopatología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA