Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 167(1): 145-157.e17, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662087

RESUMEN

The type-1 ryanodine receptor (RyR1) is an intracellular calcium (Ca(2+)) release channel required for skeletal muscle contraction. Here, we present cryo-EM reconstructions of RyR1 in multiple functional states revealing the structural basis of channel gating and ligand-dependent activation. Binding sites for the channel activators Ca(2+), ATP, and caffeine were identified at interdomain interfaces of the C-terminal domain. Either ATP or Ca(2+) alone induces conformational changes in the cytoplasmic assembly ("priming"), without pore dilation. In contrast, in the presence of all three activating ligands, high-resolution reconstructions of open and closed states of RyR1 were obtained from the same sample, enabling analyses of conformational changes associated with gating. Gating involves global conformational changes in the cytosolic assembly accompanied by local changes in the transmembrane domain, which include bending of the S6 transmembrane segment and consequent pore dilation, displacement, and deformation of the S4-S5 linker and conformational changes in the pseudo-voltage-sensor domain.


Asunto(s)
Agonistas de los Canales de Calcio/química , Activación del Canal Iónico , Contracción Muscular , Canal Liberador de Calcio Receptor de Rianodina/química , Animales , Sitios de Unión , Cafeína/química , Calcio/química , Microscopía por Crioelectrón , Ligandos , Dominios Proteicos , Conejos , Proteínas de Unión a Tacrolimus/química
2.
Cell ; 153(5): 1108-19, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706745

RESUMEN

Eukaryotic translation initiation begins with assembly of a 43S preinitiation complex. First, methionylated initiator methionine transfer RNA (Met-tRNAi(Met)), eukaryotic initiation factor (eIF) 2, and guanosine triphosphate form a ternary complex (TC). The TC, eIF3, eIF1, and eIF1A cooperatively bind to the 40S subunit, yielding the 43S preinitiation complex, which is ready to attach to messenger RNA (mRNA) and start scanning to the initiation codon. Scanning on structured mRNAs additionally requires DHX29, a DExH-box protein that also binds directly to the 40S subunit. Here, we present a cryo-electron microscopy structure of the mammalian DHX29-bound 43S complex at 11.6 Å resolution. It reveals that eIF2 interacts with the 40S subunit via its α subunit and supports Met-tRNAi(Met) in an unexpected P/I orientation (eP/I). The structural core of eIF3 resides on the back of the 40S subunit, establishing two principal points of contact, whereas DHX29 binds around helix 16. The structure provides insights into eukaryote-specific aspects of translation, including the mechanism of action of DHX29.


Asunto(s)
Mamíferos/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Helicasas/química , ARN Ribosómico/química , Ribonucleoproteínas/química , Animales , Secuencia de Bases , Sistema Libre de Células , Microscopía por Crioelectrón , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Mamíferos/genética , Modelos Moleculares , Datos de Secuencia Molecular , ARN Helicasas/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico 18S/química , ARN Ribosómico 18S/metabolismo , Conejos , Ribonucleoproteínas/metabolismo
3.
Nature ; 553(7687): 233-237, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29258289

RESUMEN

Calcium-selective transient receptor potential vanilloid subfamily member 6 (TRPV6) channels play a critical role in calcium uptake in epithelial tissues. Altered TRPV6 expression is associated with a variety of human diseases, including cancers. TRPV6 channels are constitutively active and their open probability depends on the lipidic composition of the membrane in which they reside; it increases substantially in the presence of phosphatidylinositol 4,5-bisphosphate. Crystal structures of detergent-solubilized rat TRPV6 in the closed state have previously been solved. Corroborating electrophysiological results, these structures demonstrated that the Ca2+ selectivity of TRPV6 arises from a ring of aspartate side chains in the selectivity filter that binds Ca2+ tightly. However, how TRPV6 channels open and close their pores for ion permeation has remained unclear. Here we present cryo-electron microscopy structures of human TRPV6 in the open and closed states. The channel selectivity filter adopts similar conformations in both states, consistent with its explicit role in ion permeation. The iris-like channel opening is accompanied by an α-to-π-helical transition in the pore-lining transmembrane helix S6 at an alanine hinge just below the selectivity filter. As a result of this transition, the S6 helices bend and rotate, exposing different residues to the ion channel pore in the open and closed states. This gating mechanism, which defines the constitutive activity of TRPV6, is, to our knowledge, unique among tetrameric ion channels and provides structural insights for understanding their diverse roles in physiology and disease.


Asunto(s)
Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Células Epiteliales/metabolismo , Activación del Canal Iónico , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/ultraestructura , Alanina/metabolismo , Calcio/metabolismo , Canales de Calcio/química , Humanos , Transporte Iónico , Conformación Proteica , Rotación , Canales Catiónicos TRPV/química
4.
Nature ; 549(7670): 60-65, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28737760

RESUMEN

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-subtype ionotropic glutamate receptors mediate fast excitatory neurotransmission throughout the central nervous system. Gated by the neurotransmitter glutamate, AMPA receptors are critical for synaptic strength, and dysregulation of AMPA receptor-mediated signalling is linked to numerous neurological diseases. Here we use cryo-electron microscopy to solve the structures of AMPA receptor-auxiliary subunit complexes in the apo, antagonist- and agonist-bound states and determine the iris-like mechanism of ion channel opening. The ion channel selectivity filter is formed by the extended portions of the re-entrant M2 loops, while the helical portions of M2 contribute to extensive hydrophobic interfaces between AMPA receptor subunits in the ion channel. We show how the permeation pathway changes upon channel opening and identify conformational changes throughout the entire AMPA receptor that accompany activation and desensitization. Our findings provide a framework for understanding gating across the family of ionotropic glutamate receptors and the role of AMPA receptors in excitatory neurotransmission.


Asunto(s)
Microscopía por Crioelectrón , Activación del Canal Iónico , Receptores AMPA/química , Receptores AMPA/ultraestructura , Animales , Canales de Calcio/metabolismo , Claudinas/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/agonistas , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Receptores AMPA/agonistas , Receptores AMPA/antagonistas & inhibidores , Transmisión Sináptica
5.
Nature ; 517(7532): 44-9, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25470061

RESUMEN

Ryanodine receptors (RyRs) mediate the rapid release of calcium (Ca(2+)) from intracellular stores into the cytosol, which is essential for numerous cellular functions including excitation-contraction coupling in muscle. Lack of sufficient structural detail has impeded understanding of RyR gating and regulation. Here we report the closed-state structure of the 2.3-megadalton complex of the rabbit skeletal muscle type 1 RyR (RyR1), solved by single-particle electron cryomicroscopy at an overall resolution of 4.8 Å. We fitted a polyalanine-level model to all 3,757 ordered residues in each protomer, defining the transmembrane pore in unprecedented detail and placing all cytosolic domains as tertiary folds. The cytosolic assembly is built on an extended α-solenoid scaffold connecting key regulatory domains to the pore. The RyR1 pore architecture places it in the six-transmembrane ion channel superfamily. A unique domain inserted between the second and third transmembrane helices interacts intimately with paired EF-hands originating from the α-solenoid scaffold, suggesting a mechanism for channel gating by Ca(2+).


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/ultraestructura , Animales , Calcio/deficiencia , Calcio/metabolismo , Calcio/farmacología , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Citosol/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Músculo Esquelético/química , Estructura Terciaria de Proteína , Conejos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(51): 12985-12990, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30509977

RESUMEN

Membrane proteins function in native cell membranes, but extraction into isolated particles is needed for many biochemical and structural analyses. Commonly used detergent-extraction methods destroy naturally associated lipid bilayers. Here, we devised a detergent-free method for preparing cell-membrane nanoparticles to study the multidrug exporter AcrB, by cryo-EM at 3.2-Å resolution. We discovered a remarkably well-organized lipid-bilayer structure associated with transmembrane domains of the AcrB trimer. This bilayer patch comprises 24 lipid molecules; inner leaflet chains are packed in a hexagonal array, whereas the outer leaflet has highly irregular but ordered packing. Protein side chains interact with both leaflets and participate in the hexagonal pattern. We suggest that the lipid bilayer supports and harmonizes peristaltic motions through AcrB trimers. In AcrB D407A, a putative proton-relay mutant, lipid bilayer buttresses protein interactions lost in crystal structures after detergent-solubilization. Our detergent-free system preserves lipid-protein interactions for visualization and should be broadly applicable.


Asunto(s)
Membrana Celular/metabolismo , Detergentes/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Membrana Celular/química , Cristalografía por Rayos X , Detergentes/química , Escherichia coli/crecimiento & desarrollo , Nanopartículas/química , Nanopartículas/metabolismo , Conformación Proteica
7.
Nature ; 503(7477): 539-43, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24185006

RESUMEN

Hepatitis C virus (HCV) and classical swine fever virus (CSFV) messenger RNAs contain related (HCV-like) internal ribosome entry sites (IRESs) that promote 5'-end independent initiation of translation, requiring only a subset of the eukaryotic initiation factors (eIFs) needed for canonical initiation on cellular mRNAs. Initiation on HCV-like IRESs relies on their specific interaction with the 40S subunit, which places the initiation codon into the P site, where it directly base-pairs with eIF2-bound initiator methionyl transfer RNA to form a 48S initiation complex. However, all HCV-like IRESs also specifically interact with eIF3 (refs 2, 5-7, 9-12), but the role of this interaction in IRES-mediated initiation has remained unknown. During canonical initiation, eIF3 binds to the 40S subunit as a component of the 43S pre-initiation complex, and comparison of the ribosomal positions of eIF3 and the HCV IRES revealed that they overlap, so that their rearrangement would be required for formation of ribosomal complexes containing both components. Here we present a cryo-electron microscopy reconstruction of a 40S ribosomal complex containing eIF3 and the CSFV IRES. Remarkably, although the position and interactions of the CSFV IRES with the 40S subunit in this complex are similar to those of the HCV IRES in the 40S-IRES binary complex, eIF3 is completely displaced from its ribosomal position in the 43S complex, and instead interacts through its ribosome-binding surface exclusively with the apical region of domain III of the IRES. Our results suggest a role for the specific interaction of HCV-like IRESs with eIF3 in preventing ribosomal association of eIF3, which could serve two purposes: relieving the competition between the IRES and eIF3 for a common binding site on the 40S subunit, and reducing formation of 43S complexes, thereby favouring translation of viral mRNAs.


Asunto(s)
Virus de la Fiebre Porcina Clásica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/metabolismo , Animales , Unión Competitiva , Microscopía por Crioelectrón , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/ultraestructura , Humanos , Modelos Moleculares , Biosíntesis de Proteínas , Conejos , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Ribosomas/química , Ribosomas/ultraestructura
8.
Nature ; 494(7437): 385-9, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23395961

RESUMEN

Ribosomes, the protein factories of living cells, translate genetic information carried by messenger RNAs into proteins, and are thus involved in virtually all aspects of cellular development and maintenance. The few available structures of the eukaryotic ribosome reveal that it is more complex than its prokaryotic counterpart, owing mainly to the presence of eukaryote-specific ribosomal proteins and additional ribosomal RNA insertions, called expansion segments. The structures also differ among species, partly in the size and arrangement of these expansion segments. Such differences are extreme in kinetoplastids, unicellular eukaryotic parasites often infectious to humans. Here we present a high-resolution cryo-electron microscopy structure of the ribosome of Trypanosoma brucei, the parasite that is transmitted by the tsetse fly and that causes African sleeping sickness. The atomic model reveals the unique features of this ribosome, characterized mainly by the presence of unusually large expansion segments and ribosomal-protein extensions leading to the formation of four additional inter-subunit bridges. We also find additional rRNA insertions, including one large rRNA domain that is not found in other eukaryotes. Furthermore, the structure reveals the five cleavage sites of the kinetoplastid large ribosomal subunit (LSU) rRNA chain, which is known to be cleaved uniquely into six pieces, and suggests that the cleavage is important for the maintenance of the T. brucei ribosome in the observed structure. We discuss several possible implications of the large rRNA expansion segments for the translation-regulation process. The structure could serve as a basis for future experiments aimed at understanding the functional importance of these kinetoplastid-specific ribosomal features in protein-translation regulation, an essential step towards finding effective and safe kinetoplastid-specific drugs.


Asunto(s)
Microscopía por Crioelectrón , Ribosomas/ultraestructura , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/ultraestructura , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Biosíntesis de Proteínas , ARN Protozoario/genética , ARN Protozoario/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/química , Ribosomas/genética , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Levaduras/química
9.
Proc Natl Acad Sci U S A ; 113(43): 12174-12179, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27791004

RESUMEN

Ribosomes of trypanosomatids, a family of protozoan parasites causing debilitating human diseases, possess multiply fragmented rRNAs that together are analogous to 28S rRNA, unusually large rRNA expansion segments, and r-protein variations compared with other eukaryotic ribosomes. To investigate the architecture of the trypanosomatid ribosomes, we determined the 2.5-Å structure of the Trypanosoma cruzi ribosome large subunit by single-particle cryo-EM. Examination of this structure and comparative analysis of the yeast ribosomal assembly pathway allowed us to develop a stepwise assembly model for the eight pieces of the large subunit rRNAs and a number of ancillary "glue" proteins. This model can be applied to the characterization of Trypanosoma brucei and Leishmania spp. ribosomes as well. Together with other details, our atomic-level structure may provide a foundation for structure-based design of antitrypanosome drugs.


Asunto(s)
Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Ribosomas/ultraestructura , Trypanosoma cruzi/química , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , ARN Ribosómico/genética , ARN Ribosómico/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/genética , Ribosomas/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/ultraestructura
10.
Nucleic Acids Res ; 42(5): 3409-18, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24335085

RESUMEN

Eukaryotic translation termination results from the complex functional interplay between two release factors, eRF1 and eRF3, in which GTP hydrolysis by eRF3 couples codon recognition with peptidyl-tRNA hydrolysis by eRF1. Here, we present a cryo-electron microscopy structure of pre-termination complexes associated with eRF1•eRF3•GDPNP at 9.7 -Šresolution, which corresponds to the initial pre-GTP hydrolysis stage of factor attachment and stop codon recognition. It reveals the ribosomal positions of eRFs and provides insights into the mechanisms of stop codon recognition and triggering of eRF3's GTPase activity.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/química , Ribosomas/química , Codón de Terminación , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Humanos , Modelos Moleculares , Factores de Terminación de Péptidos/metabolismo
11.
J Struct Biol ; 190(3): 348-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25913484

RESUMEN

Image formation in bright field electron microscopy can be described with the help of the contrast transfer function (CTF). In this work the authors describe the "CTF Estimation Challenge", called by the Madrid Instruct Image Processing Center (I2PC) in collaboration with the National Center for Macromolecular Imaging (NCMI) at Houston. Correcting for the effects of the CTF requires accurate knowledge of the CTF parameters, but these have often been difficult to determine. In this challenge, researchers have had the opportunity to test their ability in estimating some of the key parameters of the electron microscope CTF on a large micrograph data set produced by well-known laboratories on a wide set of experimental conditions. This work presents the first analysis of the results of the CTF Estimation Challenge, including an assessment of the performance of the different software packages under different conditions, so as to identify those areas of research where further developments would be desirable in order to achieve high-resolution structural information.


Asunto(s)
Sustancias Macromoleculares/química , Microscopía Electrónica/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos
12.
Proc Natl Acad Sci U S A ; 109(45): 18413-8, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23091004

RESUMEN

Eukaryotic translation termination results from the complex functional interplay between two eukaryotic release factors, eRF1 and eRF3, and the ribosome, in which GTP hydrolysis by eRF3 couples codon recognition with peptidyl-tRNA hydrolysis by eRF1. Here, using cryo-electron microscopy (cryo-EM) and flexible fitting, we determined the structure of eRF1-eRF3-guanosine 5'-[ß,γ-imido]triphosphate (GMPPNP)-bound ribosomal pretermination complex (pre-TC), which corresponds to the initial, pre-GTP hydrolysis stage of factor attachment. Our results show that eukaryotic translation termination involves a network of interactions between the two release factors and the ribosome. Our structure provides mechanistic insight into the coordination between GTP hydrolysis by eRF3 and subsequent peptide release by eRF1.


Asunto(s)
Microscopía por Crioelectrón , Mamíferos/metabolismo , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/ultraestructura , Animales , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/metabolismo , Conejos , Ribosomas/metabolismo , Ribosomas/ultraestructura , Saccharomyces cerevisiae
13.
Nucleic Acids Res ; 39(7): 2845-54, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21131279

RESUMEN

Group II self-splicing introns are phylogenetically diverse retroelements that are widely held to be the ancestors of spliceosomal introns and retrotransposons that insert into DNA. Folding of group II intron RNA is often guided by an intron-encoded protein to form a catalytically active ribonucleoprotein (RNP) complex that plays a key role in the activity of the intron. To date, possible structural differences between the intron RNP in its precursor and spliced forms remain unexplored. In this work, we have trapped the native Lactococcus lactis group II intron RNP complex in its precursor form, by deleting the adenosine nucleophile that initiates splicing. Sedimentation velocity, size-exclusion chromatography and cryo-electron microscopy provide the first glimpse of the intron RNP precursor as a large, loosely packed structure. The dimensions contrast with those of compact spliced introns, implying that the RNP undergoes a dramatic conformational change to achieve the catalytically active state.


Asunto(s)
Intrones , Precursores del ARN/química , ARN Catalítico/química , Ribonucleoproteínas/química , Lactococcus lactis/genética , Conformación Molecular , Precursores del ARN/aislamiento & purificación , ARN Catalítico/aislamiento & purificación , Ribonucleoproteínas/aislamiento & purificación , Ribonucleoproteínas/ultraestructura
14.
Proc Natl Acad Sci U S A ; 106(4): 1063-8, 2009 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-19122150

RESUMEN

In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.7-A cryo-electron microscopy map of the aminoacyl-tRNA x EF-Tu x GDP x kirromycin-bound Escherichia coli ribosome, together with an atomic model of the complex obtained through molecular dynamics flexible fitting. The model reveals the conformational changes in the conserved GTPase switch regions of EF-Tu that trigger hydrolysis of GTP, along with key interactions, including those between the sarcin-ricin loop and the P loop of EF-Tu, and between the effector loop of EF-Tu and a conserved region of the 16S rRNA. Our data suggest that GTP hydrolysis on EF-Tu is controlled through a hydrophobic gate mechanism.


Asunto(s)
Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Factor Tu de Elongación Peptídica/química , Ribosomas/metabolismo , Microscopía por Crioelectrón , Activación Enzimática , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Histidina/metabolismo , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Factor Tu de Elongación Peptídica/ultraestructura , Estructura Secundaria de Proteína , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/ultraestructura , Transducción de Señal
15.
Nature ; 427(6977): 808-14, 2004 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-14985753

RESUMEN

Cotranslational translocation of proteins across or into membranes is a vital process in all kingdoms of life. It requires that the translating ribosome be targeted to the membrane by the signal recognition particle (SRP), an evolutionarily conserved ribonucleoprotein particle. SRP recognizes signal sequences of nascent protein chains emerging from the ribosome. Subsequent binding of SRP leads to a pause in peptide elongation and to the ribosome docking to the membrane-bound SRP receptor. Here we present the structure of a targeting complex consisting of mammalian SRP bound to an active 80S ribosome carrying a signal sequence. This structure, solved to 12 A by cryo-electron microscopy, enables us to generate a molecular model of SRP in its functional conformation. The model shows how the S domain of SRP contacts the large ribosomal subunit at the nascent chain exit site to bind the signal sequence, and that the Alu domain reaches into the elongation-factor-binding site of the ribosome, explaining its elongation arrest activity.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Microscopía por Crioelectrón , Mamíferos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Señales de Clasificación de Proteína/genética , Señales de Clasificación de Proteína/fisiología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ribosomas/química , Ribosomas/ultraestructura , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/ultraestructura , Relación Estructura-Actividad
16.
Nat Struct Mol Biol ; 27(7): 625-634, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32483338

RESUMEN

Cyclic nucleotide-gated (CNG) channels convert cyclic nucleotide (CN) binding and unbinding into electrical signals in sensory receptors and neurons. The molecular conformational changes underpinning ligand activation are largely undefined. We report both closed- and open-state atomic cryo-EM structures of a full-length Caenorhabditis elegans cyclic GMP-activated channel TAX-4, reconstituted in lipid nanodiscs. These structures, together with computational and functional analyses and a mutant channel structure, reveal a double-barrier hydrophobic gate formed by two S6 amino acids in the central cavity. cGMP binding produces global conformational changes that open the cavity gate located ~52 Å away but do not alter the structure of the selectivity filter-the commonly presumed activation gate. Our work provides mechanistic insights into the allosteric gating and regulation of CN-gated and nucleotide-modulated channels and CNG channel-related channelopathies.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Microscopía por Crioelectrón , GMP Cíclico/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Canales Iónicos/genética , Ligandos , Lípidos/química , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis , Mutación , Conformación Proteica
17.
Sci Adv ; 6(14): eaay9572, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270040

RESUMEN

The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic ß-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Retículo Endoplásmico/metabolismo , Ribosomas/metabolismo , Animales , Transporte Biológico , Microscopía por Crioelectrón , Vesículas Citoplasmáticas/ultraestructura , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Imagen Molecular , Especificidad de Órganos , Ratas , Ribosomas/ultraestructura , Estrés Fisiológico
18.
J Struct Biol ; 166(2): 126-32, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19269332

RESUMEN

Attempts to develop efficient classification approaches to the problem of heterogeneity in single-particle reconstruction of macromolecules require phantom data with realistic noise models. We have estimated the signal-to-noise ratios and spectral signal-to-noise ratios for three steps in the electron microscopic image formation from data obtained experimentally. An important result is that structural noise, i.e., the irreproducible component of the object prior to image formation, is substantial, and of the same order of magnitude as the reproducible signal. Based on this result, the noise modeling for testing new classification techniques can be improved.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos
19.
Proteins ; 77(1): 62-73, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19408310

RESUMEN

The difficulty in identifying the toxic agents in all amyloid-related diseases is likely due to the complicated kinetics and thermodynamics of the nucleation process and subsequent fibril formation. The slow progression of these diseases suggests that the formation, incorporation, and/or action of toxic agents are possibly rate limiting. Candidate toxic agents include precursors (some at very low concentrations), also called oligomers and protofibrils, and the fibrils. Here, we investigate the kinetic and thermodynamic behavior of human insulin oligomers (imaged by cryo-EM) under fibril-forming conditions (pH 1.6 and 65 degrees C) by probing the reaction pathway to insulin fibril formation using two different types of experiments-cooling and seeding-and confirm the validity of the nucleation model and its effect on fibril growth. The results from both the cooling and seeding studies confirm the existence of a time-changing oligomer reaction process prior to fibril formation that likely involves a rate-limiting nucleation process followed by structural rearrangements of intermediates (into beta-sheet rich entities) to form oligomers that then form fibrils. The latter structural rearrangement step occurs even in the absence of nuclei (i.e., with added heterologous seeds). Nuclei are formed at the fibrillation conditions (pH 1.6 and 65 degrees C) but are also continuously formed during cooling at pH 1.6 and 25 degrees C. Within the time-scale of the experiments, only after increasing the temperature to 65 degrees C are the trapped insulin nuclei and resultant structures able to induce the structural rearrangement step and overcome the energy barrier to form fibrils. This delay in fibrillation and accumulation of nuclei at low temperature (25 degrees C) result in a decrease in the mean length of the fibers when placed at 65 degrees C. Fits of an empirical model to the data provide quantitative measures of the delay in the lag-time during the nucleation process and subsequent reduction in fibril growth rate resulting from the cooling. Also, the seeding experiments, within the time-scale of the measurements, demonstrate that fibers can initiate fast fibrillation with dissolved insulin (fresh or taken during the lag-period) but not with other fibers. Qualitatively this is explained with a conjectual free-energy space plot.


Asunto(s)
Amiloide/química , Insulina/química , Amiloide/ultraestructura , Microscopía por Crioelectrón , Humanos , Concentración de Iones de Hidrógeno , Cinética , Pliegue de Proteína , Multimerización de Proteína , Temperatura , Termodinámica
20.
Nat Commun ; 10(1): 2579, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189921

RESUMEN

When the ribosome encounters a stop codon, it recruits a release factor (RF) to hydrolyze the ester bond between the peptide chain and tRNA. RFs have structural motifs that recognize stop codons in the decoding center and a GGQ motif for induction of hydrolysis in the peptidyl transfer center 70 Å away. Surprisingly, free RF2 is compact, with only 20 Å between its codon-reading and GGQ motifs. Cryo-EM showed that ribosome-bound RFs have extended structures, suggesting that RFs are compact when entering the ribosome and then extend their structures upon stop codon recognition. Here we use time-resolved cryo-EM to visualize transient compact forms of RF1 and RF2 at 3.5 and 4 Å resolution, respectively, in the codon-recognizing ribosome complex on the native pathway. About 25% of complexes have RFs in the compact state at 24 ms reaction time, and within 60 ms virtually all ribosome-bound RFs are transformed to their extended forms.


Asunto(s)
Proteínas de Escherichia coli/ultraestructura , Modelos Moleculares , Terminación de la Cadena Péptídica Traduccional/fisiología , Factores de Terminación de Péptidos/ultraestructura , Dominios Proteicos/fisiología , Sitios de Unión/fisiología , Codón de Terminación/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Factores de Terminación de Péptidos/metabolismo , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA