Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Arthroplasty ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233097

RESUMEN

BACKGROUND: A two-stage revision remains the standard for managing chronic periprosthetic joint infection (PJI). Despite multiple spacer options, whether a particular one better resists biofilm formation remains unclear. Prefabricated polymethylmethacrylate (PMMA) articulating spacers containing antibiotics and a proprietary pore structure were developed to increase antibiotic elution characterized by a rapid burst phase for the initial 1 to 2 days and an extended slow-release phase for > 28 days. This in vitro study determined whether biofilm formation is prevented during the initial rapid burst phase and/or the slow-release phase. METHODS: S. aureus-Xen36 was incubated in 1.5 ml of Luria-Bertani broth with PMMA discs with the proprietary pore structure either with or without gentamycin and vancomycin, or with 'Hoffman style' positive-control discs (ultra-high molecular weight polyethylene (UHMWPE) or cobalt-chrome). Non-adherent bacteria were removed by three Phosphate Buffered Saline rinses every 20 to 24 hours. Planktonic bacterial growth in the culture broth and biofilm formation on the discs were measured by Colony Forming Unit (CFU) counting and resazurin reduction assays. Experiments were repeated > 4 times. RESULTS: No detectable planktonic bacterial growth or biofilm formation occurred in cultures containing PMMA with antibiotics (≤ 15 CFUs/disc), whereas biofilms formed on PMMA without antibiotics, UHMWPE, and cobalt-chrome (1x107 to 4x108 CFUs/disc, P < 0.0001). Biofilm formation was confirmed by a 100-fold decrease in sensitivity to vancomycin. To determine whether the antibiotic slow-release phase is sufficient to block biofilm formation, PMMA discs with antibiotics were pre-eluted for 14 days with multiple saline changes prior to bacterial inoculation. After antibiotic elution, still no detectable biofilms formed on PMMA discs with antibiotics (≤ 15 CFUs/disc, P <0.0001). CONCLUSION: Antibiotic release during both the initial and slow-release phases prevented biofilm formation on PMMA with the proprietary pore structure. This may translate into improved infection eradication rates clinically.

2.
Infect Immun ; 90(3): e0066921, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35099267

RESUMEN

Bacterial infections routinely cause inflammation and thereby impair osseointegration of orthopedic implants. Acinetobacter spp., which cause osteomyelitis following trauma, on or off the battlefield, were, however, reported to cause neither osteomyelitis nor osteolysis in rodents. We therefore compared the effects of Acinetobacter strain M2 to those of Staphylococcus aureus in a murine implant infection model. Sterile implants and implants with adherent bacteria were inserted in the femur of mice. Bacterial burden, levels of proinflammatory cytokines, and osseointegration were measured. All infections were localized to the implant site. Infection with either S. aureus or Acinetobacter strain M2 increased the levels of proinflammatory cytokines and the chemokine CCL2 in the surrounding femurs, inhibited bone formation around the implant, and caused loss of the surrounding cortical bone, leading to decreases in both histomorphometric and biomechanical measures of osseointegration. Genetic deletion of TLR2 and TLR4 from the mice partially reduced the effects of Acinetobacter strain M2 on osseointegration but did not alter the effects of S. aureus. This is the first report that Acinetobacter spp. impair osseointegration of orthopedic implants in mice, and the murine model developed for this study will be useful for future efforts to clarify the mechanism of implant failure due to Acinetobacter spp. and to assess novel diagnostic tools or therapeutic agents.


Asunto(s)
Acinetobacter baumannii , Osteomielitis , Infecciones Estafilocócicas , Animales , Citocinas/uso terapéutico , Ratones , Oseointegración , Osteomielitis/etiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus
3.
Adv Exp Med Biol ; 1258: 55-75, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32767234

RESUMEN

Epigenetic deregulation is an emerging hallmark of cancer that enables tumor cells to escape surveillance by tumor suppressors and ultimately progress. The structure of the epigenome consists of covalent modifications of chromatin components, including acetylation by histone acetyltransferases (HATs) and deacetylation by histone deacetylases (HDACs). Targeting these enzymes with inhibitors to restore epigenetic homeostasis has been explored for many cancers. Osteosarcoma, an aggressive bone malignancy that primarily affects children and young adults, is notable for widespread genetic and epigenetic instability. This may explain why therapy directed at unique molecular pathways has failed to substantially improve outcomes in osteosarcoma over the past four decades. In this review, we discuss the potential of targeting the cancer epigenome, with a focus on histone deacetylase inhibitors (HDACi) for osteosarcoma. We additionally highlight the safety and tolerance of HDACi, combination chemotherapy with HDACi, and the ongoing challenges in the development of these agents.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Epigenoma/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Acetilación/efectos de los fármacos , Neoplasias Óseas/enzimología , Histona Desacetilasas/metabolismo , Humanos , Osteosarcoma/enzimología
4.
Adv Exp Med Biol ; 1258: 141-155, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32767239

RESUMEN

The primary conclusions of our 2014 contribution to this series were as follows: Multiple receptor tyrosine kinases (RTKs) likely contribute to aggressive phenotypes in osteosarcoma and, therefore, inhibition of multiple RTKs is likely necessary for successful clinical outcomes. Inhibition of multiple RTKs may also be useful to overcome resistance to inhibitors of individual RTKs as well as resistance to conventional chemotherapies. Different combinations of RTKs are likely important in individual patients. AXL, EPHB2, FGFR2, IGF1R, and RET were identified as promising therapeutic targets by our in vitro phosphoproteomic/siRNA screen of 42 RTKs in the highly metastatic LM7 and 143B human osteosarcoma cell lines. This chapter is intended to provide an update on these topics as well as the large number of osteosarcoma clinical studies of inhibitors of multiple tyrosine kinases (multi-TKIs) that were recently published.


Asunto(s)
Neoplasias Óseas/enzimología , Osteosarcoma/enzimología , Proteínas Tirosina Quinasas , Humanos , Proteínas Tirosina Quinasas/metabolismo , Tirosina/metabolismo
5.
Clin Orthop Relat Res ; 476(12): 2442-2453, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30427314

RESUMEN

BACKGROUND: Orthopaedic wear particles activate the NLRP3 inflammasome to produce active interleukin 1ß (IL1ß). However, the NLRP3 inflammasome must be primed before it can be activated, and it is unknown whether wear particles induce priming. Toll-like receptors (TLRs) are thought to mediate particle bioactivity. It remains controversial whether pathogen-associated molecular patterns (PAMPs) and/or alarmins are responsible for TLR activation by wear particles. QUESTIONS/PURPOSES: (1) Does priming of the NLRP3 inflammasome by wear particles depend on adherent PAMPs? (2) Does priming of the NLRP3 inflammasome by wear particles depend on TLRs and TIRAP/Mal? (3) Does priming of the NLRP3 inflammasome by wear particles depend on cognate TLRs? (4) Does activation of the NLRP3 inflammasome by wear particles depend on adherent PAMPs? METHODS: Immortalized murine macrophages were stimulated by as-received titanium particles with adherent bacterial debris, endotoxin-free titanium particles, or titanium particles with adherent ultrapure lipopolysaccharide. To study priming, NLRP3 and IL1ß mRNA and IL1ß protein levels were assessed in wild-type, TLR4, TLR2, and TIRAP/Mal macrophages. To study activation, IL1ß protein secretion was assessed in wild-type macrophages preprimed with ultrapure lipopolysaccharide. RESULTS: Compared with titanium particles with adherent bacterial debris, endotoxin-free titanium particles induced 86% less NLRP3 mRNA (0.05 ± 0.03 versus 0.35 ± 0.01 NLRP3/GAPDH, p < 0.001) and 91% less IL1ß mRNA (0.02 ± 0.01 versus 0.22 ± 0.03 IL1ß/GAPDH, p < 0.001). ProIL1ß protein level was robustly increased in wild-type macrophages stimulated by particles with adherent PAMPs but was not detectably produced in macrophages stimulated by endotoxin-free particles. Adherence of ultrapure lipopolysaccharide to endotoxin-free particles reconstituted stimulation of NLRP3 and IL1ß mRNA. Particles with adherent bacterial debris induced 79% less NLRP3 mRNA (0.09 ± 0.004 versus 0.43 ± 0.13 NLRP3/GAPDH, p < 0.001) and 40% less IL1ß mRNA (0.09 ± 0.04 versus 0.15 ± 0.03 IL1ß/GAPDH, p = 0.005) in TLR4 macrophages than in wild-type. Similarly, those particles induced 49% less NLRP3 mRNA (0.22 ± 0.10 versus 0.43 ± 0.13 NLRP3/GAPDH, p = 0.004) and 47% less IL1ß mRNA (0.08 ± 0.02 versus 0.15 ± 0.03 IL1ß/GAPDH, p = 0.012) in TIRAP/Mal macrophages than in wild-type. Particles with adherent ultrapure lipopolysaccharide induced 96% less NLRP3 mRNA (0.012 ± 0.001 versus 0.27 ± 0.05 NLRP3/GAPDH, p = 0.003) and 91% less IL1ß mRNA (0.03 ± 0.01 versus 0.34 ± 0.07 IL1ß/GAPDH, p < 0.001) expression in TLR4 macrophages than in wild-type. In contrast, those particles did not induce less NLRP3 and IL1ß mRNA in TLR2 macrophages. IL1ß protein secretion was equivalently induced by particles with adherent bacterial debris or by endotoxin-free particles in a time-dependent manner in wild-type macrophages. For example, particles with adherent bacterial debris induced 99% ± 2% of maximal IL1ß secretion after 12 hours, whereas endotoxin-free particles induced 92% ± 11% (p > 0.5). CONCLUSIONS: This cell culture study showed that adherent PAMPs are required for priming of the NLRP3 inflammasome by wear particles and this process is dependent on their cognate TLRs and TIRAP/Mal. In contrast, activation of the NLRP3 inflammasome by titanium particles is not dependent on adherent PAMPs. Animal and implant retrieval studies are needed to determine whether wear particles have similar effects on the NLRP3 inflammasome in vivo. CLINICAL RELEVANCE: Our findings, together with recent findings that aseptic loosening associates with polymorphisms in the TIRAP/Mal locus, support that adherent PAMPs may contribute to aseptic loosening in patients undergoing arthroplasty.


Asunto(s)
Reactividad Cruzada/efectos de los fármacos , Macrófagos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Titanio/farmacología , Receptores Toll-Like/metabolismo , Animales , Interleucina-1beta/metabolismo , Ratones
6.
Clin Orthop Relat Res ; 476(7): 1400-1411, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29481344

RESUMEN

BACKGROUND: Approximately 80% of patients with osteosarcoma harbor subclinical pulmonary micrometastases at diagnosis. Conventional chemotherapy includes methotrexate, doxorubicin, and cisplatin (MAP); however, this regimen and thus overall survival (60%-70%) have remained largely unchanged for 30 years. It therefore is necessary to identify novel therapeutics targeting the metastatic progression of osteosarcoma. QUESTIONS/PURPOSES: This laboratory study explored application of osteosarcoma spheroids (sarcospheres) for drug screening with the following purposes: (1) to characterize sarcosphere size; (2) to establish accurate measurement of sarcosphere growth; (3) to confirm sarcosphere uniformity; and (4) to apply the platform to evaluate MAP chemotherapy. METHODS: Sarcospheres were first characterized to establish accurate measurement of sarcosphere growth and uniform production. The refined platform then was applied to evaluate MAP chemotherapy to validate its use in drug screening. Sarcospheres were generated from highly metastatic human cell lines (143B, MG-63.3, and LM7) by centrifugation to form three-dimensional aggregates modeling micrometastases. Sarcospheres were matured for 24 hours and then incubated with or without drug from Days 0 to 2. Size was assessed by diameter and volume using brightfield microscopy. Growth was measured by volume and resazurin reduction in viable cells. Sarcosphere uniformity was assessed by diameter and resazurin reduction at Day 0 and the Z' factor, a measure of assay suitability for high-throughput screening, was calculated at Day 2. Sarcospheres were treated with individual MAP agents (0 to 1000 µmol/L) to determine concentrations at which 50% of growth from Days 0 to 2 was inhibited (GIC50). Cell lines resistant to MAP in sarcospheres were treated in monolayer for comparison. RESULTS: Sarcosphere diameter and growth from Days 0 to 2 were quantitatively dependent on the number of cells seeded and the cell line used. Accurate measurement of growth occurred after resazurin incubation for 6 hours, without EDTA-mediated permeabilization, and was correlated with the number of cells seeded and sarcosphere volume for 143B (Spearman's r: 0.98; p < 0.001), MG-63.3 (0.99; p < 0.001), and LM7 (0.98; p < 0.001). Sarcospheres met established criteria for screening applications as mean Z' factors were greater than 0.5 for all cell lines. Response to MAP therapy was cell line-dependent, because MG-63.3 and LM7 sarcospheres exhibited greater than 2000-fold resistance to methotrexate (GIC50 = 88 ± 36 µmol/L and 174 ± 16 µmol/L, respectively) compared with the 143B cell line (GIC50 = 0.04 ± 0.01 µmol/L; p < 0.001 for MG-63.3 and LM7). MG-63.3 monolayers were more sensitive to methotrexate (GIC50 = 0.01 ± 0.01 µmol/L; p < 0.001) than MG-63.3 sarcospheres, whereas LM7 monolayers remained chemoresistent (GIC50 not reached). CONCLUSIONS: This study developed and validated a drug screening platform for progression of osteosarcoma micrometastases. It also highlights heterogeneity among osteosarcoma cell lines. These findings appear to reflect known patient-to-patient heterogeneity and underscore the importance of evaluating multiple tumor models when testing drugs for the treatment of osteosarcoma. CLINICAL RELEVANCE: The described approach is a promising starting point for drug screening in osteosarcoma because it is tailored to evaluate micrometastatic disease. A reliable and rapid method to identify novel therapeutics is critical to improve stagnant outcomes for patients with osteosarcoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Óseas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Micrometástasis de Neoplasia/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , Línea Celular Tumoral , Cisplatino/farmacología , Doxorrubicina/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Metotrexato/farmacología
7.
Clin Orthop Relat Res ; 473(9): 2898-907, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25953690

RESUMEN

BACKGROUND: Innate defense regulator peptide-1018 (IDR-1018) is a 12-amino acid, synthetic, immunomodulatory host defense peptide that can reduce soft tissue infections and is less likely to induce bacterial resistance than conventional antibiotics. However, IDRs have not been tested on orthopaedic infections and the immunomodulatory effects of IDR-1018 have only been characterized in response to lipopolysacharide, which is exclusively produced by Gram-negative bacteria. QUESTIONS/PURPOSES: We sought (1) to more fully characterize the immunomodulatory effects of IDR-1018, especially in response to Staphylococcus aureus; and (2) to determine whether IDR-1018 decreases S aureus infection of orthopaedic implants in mice and thereby protects the implants from failure to osseointegrate. METHODS: In vitro effects of IDR-1018 on S aureus were assessed by determining minimum inhibitory concentrations in bacterial broth without and with supplementation of physiologic ion levels. In vitro effects of IDR-1018 on macrophages were determined by measuring production of monocyte chemoattractant protein-1 (MCP-1) and proinflammatory cytokines by enzyme-linked immunosorbent assay. In vivo effects of IDR-1018 were determined in a murine model of S aureus implant infection by quantitating bacterial burden, macrophage recruitment, MCP-1, proinflammatory cytokines, and osseointegration in nine mice per group on Day 1 postimplantation and 20 mice per group on Day 15 postimplantation. RESULTS: IDR-1018 demonstrated antimicrobial activity by directly killing S aureus even in the presence of physiologic ion levels, increasing recruitment of macrophages to the site of infections by 40% (p = 0.036) and accelerating S aureus clearance in vivo (p = 0.008) with a 2.6-fold decrease in bacterial bioburden on Day 7 postimplantation. In vitro immunomodulatory activity of IDR-1018 included inducing production of MCP-1 in the absence of other inflammatory stimuli and to potently blunt excess production of proinflammatory cytokines and MCP-1 induced by lipopolysaccharide. Higher concentrations of IDR-1018 were required to blunt production of proinflammatory cytokines and MCP-1 in the presence S aureus. The largest in vivo immunomodulatory effect of IDR-1018 was to reduce tumor necrosis factor-α levels induced by S aureus by 60% (p = 0.006). Most importantly, IDR-1018 reduced S aureus-induced failures of osseointegration by threefold (p = 0.022) and increased osseointegration as measured by ultimate force (5.4-fold, p = 0.033) and average stiffness (4.3-fold, p = 0.049). CONCLUSIONS: IDR-1018 is potentially useful to reduce orthopaedic infections by directly killing bacteria and by recruiting macrophages to the infection site. CLINICAL RELEVANCE: These findings make IDR-1018 an attractive candidate to explore in larger animal models to ascertain whether its effects in our in vitro and mouse experiments can be replicated in more clinically relevant settings.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Factores Inmunológicos/farmacología , Oseointegración/efectos de los fármacos , Infecciones Relacionadas con Prótesis/prevención & control , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/efectos de los fármacos , Animales , Línea Celular , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Infecciones Relacionadas con Prótesis/inmunología , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/inmunología , Factores de Tiempo
8.
Stem Cells ; 31(12): 2789-99, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23963683

RESUMEN

The protein kinase inhibitor (Pki) gene family inactivates nuclear protein kinase A (PKA) and terminates PKA-induced gene expression. We previously showed that Pkig is the primary family member expressed in osteoblasts and that Pkig knockdown increases the effects of parathyroid hormone and isoproterenol on PKA activation, gene expression, and inhibition of apoptosis. Here, we determined whether endogenous levels of Pkig regulate osteoblast differentiation. Pkig is the primary family member in murine embryonic fibroblasts (MEFs), murine marrow-derived mesenchymal stem cells, and human mesenchymal stem cells. Pkig deletion increased forskolin-dependent nuclear PKA activation and gene expression and Pkig deletion or knockdown increased osteoblast differentiation. PKA signaling is known to stimulate adipogenesis; however, adipogenesis and osteogenesis are often reciprocally regulated. We found that the reciprocal regulation predominates over the direct effects of PKA since adipogenesis was decreased by Pkig deletion or knockdown. Pkig deletion or knockdown also simultaneously increased osteogenesis and decreased adipogenesis in mixed osteogenic/adipogenic medium. Pkig deletion increased PKA-induced expression of leukemia inhibitory factor (Lif) mRNA and LIF protein. LIF neutralizing antibodies inhibited the effects on osteogenesis and adipogenesis of either Pkig deletion in MEFs or PKIγ knockdown in both murine and human mesenchymal stem cells. Collectively, our results show that endogenous levels of Pkig reciprocally regulate osteoblast and adipocyte differentiation and that this reciprocal regulation is mediated in part by LIF. Stem Cells 2013;31:2789-2799.


Asunto(s)
Adipocitos/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Osteoblastos/citología , Adipocitos/metabolismo , Animales , Diferenciación Celular/fisiología , Regulación hacia Abajo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Factor Inhibidor de Leucemia/genética , Masculino , Ratones , Osteoblastos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
9.
Adv Exp Med Biol ; 804: 47-66, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24924168

RESUMEN

Despite aggressive surgical and chemotherapy protocols, survival rates for osteosarcoma patients have not improved over the last 30 years. Therefore, novel therapeutic agents are needed. Receptor tyrosine kinases have emerged as targets for the development of new cancer therapies since their activation leads to enhanced proliferation, survival, and metastasis. In fact, aberrant expression and activation of RTKs have been associated with the progression of many cancers. Studies from our lab using phosphoproteomic screening identified RTKs that are activated and thus may contribute to the signaling within metastatic human osteosarcoma cells. Functional genomic screening using siRNA was performed to distinguish which of the activated RTKs contribute to in vitro phenotypes associated with metastatic potential (motility, invasion, colony formation, and cell growth). The resulting RTK hits were then validated using independent validation experiments. From these results, we identified four RTKs (Axl, EphB2, FGFR2, and Ret) that have not been previously studied in osteosarcoma and provide targets for the development of novel therapeutics.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-ret/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Receptor EphB2/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Antineoplásicos/uso terapéutico , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/secundario , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor EphB2/genética , Receptor EphB2/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Tirosina Quinasa del Receptor Axl
10.
Clin Orthop Relat Res ; 472(12): 3709-17, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25034980

RESUMEN

BACKGROUND: Overwhelming evidence supports the concept that wear particles are the primary initiator of aseptic loosening of orthopaedic implants. It is likely, however, that other factors modulate the biologic response to wear particles. This review focuses on three potential other factors: genetic susceptibility, Toll-like receptors (TLRs), and bacterial pathogen-associated molecular patterns (PAMPs). WHERE ARE WE NOW?: Considerable evidence is emerging that both genetic susceptibility and TLR activation are important factors that modulate the biologic response to wear particles, but it remains controversial whether bacterial PAMPs also do so. WHERE DO WE NEED TO GO?: Detailed understanding of the roles of these other factors may lead to identification of novel therapeutic targets for patients with aseptic loosening. HOW DO WE GET THERE?: Highest priority should be given to polymorphism replication studies with large numbers of patients and studies to replicate the reported correlation between bacterial biofilms and the severity of aseptic loosening.


Asunto(s)
Artroplastia de Reemplazo/instrumentación , Prótesis Articulares , Articulaciones/cirugía , Complicaciones Posoperatorias/etiología , Falla de Prótesis , Receptores Toll-Like/inmunología , Animales , Artroplastia de Reemplazo/efectos adversos , Bacterias/inmunología , Biopelículas , Fenómenos Biomecánicos , Predisposición Genética a la Enfermedad , Interacciones Huésped-Patógeno , Humanos , Articulaciones/fisiopatología , Complicaciones Posoperatorias/genética , Complicaciones Posoperatorias/inmunología , Complicaciones Posoperatorias/microbiología , Diseño de Prótesis , Factores de Riesgo , Transducción de Señal , Estrés Mecánico , Resultado del Tratamiento
11.
Bone Joint Res ; 13(3): 101-109, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38432258

RESUMEN

Aims: Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against Staphylococcus aureus biofilms grown on polystyrene or polypropylene substrates. However, the effectiveness of many antibiotics can be substantially altered depending on which orthopaedically relevant substrates the biofilms grow. This study, therefore, evaluated the activity of halicin against less mature and more mature S. aureus biofilms grown on titanium alloy, cobalt-chrome, ultra-high molecular weight polyethylene (UHMWPE), devitalized muscle, or devitalized bone. Methods: S. aureus-Xen36 biofilms were grown on the various substrates for 24 hours or seven days. Biofilms were incubated with various concentrations of halicin or vancomycin and then allowed to recover without antibiotics. Minimal biofilm eradication concentrations (MBECs) were defined by CFU counting and resazurin reduction assays, and were compared with the planktonic minimal inhibitory concentrations (MICs). Results: Halicin continued to exert significantly (p < 0.01) more antibacterial activity against biofilms grown on all tested orthopaedically relevant substrates than vancomycin, an antibiotic known to be affected by biofilm maturity. For example, halicin MBECs against both less mature and more mature biofilms were ten-fold to 40-fold higher than its MIC. In contrast, vancomycin MBECs against the less mature biofilms were 50-fold to 200-fold higher than its MIC, and 100-fold to 400-fold higher against the more mature biofilms. Conclusion: Halicin is a promising antibiotic that should be tested in animal models of orthopaedic infection.

12.
J Orthop Res ; 42(3): 512-517, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38146070

RESUMEN

Antimicrobial strategies for musculoskeletal infections are typically first developed with in vitro models. The In Vitro Section of the 2023 Orthopedic Research Society Musculoskeletal Infection international consensus meeting (ICM) probed our state of knowledge of in vitro systems with respect to bacteria and biofilm phenotype, standards, in vitro activity, and the ability to predict in vivo efficacy. A subset of ICM delegates performed systematic reviews on 15 questions and made recommendations and assessment of the level of evidence that were then voted on by 72 ICM delegates. Here, we report recommendations and rationale from the reviews and the results of the internet vote. Only two questions received a ≥90% consensus vote, emphasizing the disparate approaches and lack of established consensus for in vitro modeling and interpretation of results. Comments on knowledge gaps and the need for further research on these critical MSKI questions are included.


Asunto(s)
Biopelículas , Consenso
13.
Sarcoma ; 2012: 479712, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22701331

RESUMEN

ß-nitrostyrene compounds, such as 3,4-methylenedioxy-ß-nitrostyrene (MNS), inhibit growth and induce apoptosis in tumor cells, but no reports have investigated their role in osteosarcoma. In this study, human osteosarcoma cell families with cell lines of varying tumorigenic and metastatic potential were utilized. Scrape motility assays, colony formation assays, and colony survival assays were performed with osteosarcoma cell lines, both in the presence and absence of MNS. Effects of MNS on human osteoblasts and airway epithelial cells were assessed in monolayer cultures. MNS decreased metastatic cell line motility by 72-76% and colony formation by 95-100%. MNS consistently disrupted preformed colonies in a time-dependent and dose-dependent manner. MNS had similar effects on human osteoblasts but little effect on airway epithelial cells. An inactive analog of MNS had no detectable effects, demonstrating specificity. MNS decreases motility and colony formation of osteosarcoma cells and disrupts preformed cell colonies, while producing little effect on pulmonary epithelial cells.

14.
Nat Commun ; 13(1): 6648, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333322

RESUMEN

The impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection. In contrast, mice with targeted MYD88 restoration in osteocytes exhibit osteolysis with inflammatory cell infiltration. In vitro, bacterial PAMPs induce significantly higher expression of the cytokine RANKL in osteocytes than osteoblasts. Mechanistically, activation of the osteocyte MYD88 pathway up-regulates RANKL by increasing binding of the transcription factors CREB and STAT3 to Rankl enhancers and by suppressing K48-ubiquitination of CREB/CREB binding protein and STAT3. Systemic administration of an MYD88 inhibitor prevents jawbone loss in Pg-driven periodontitis. These findings reveal that osteocytes directly regulate inflammatory osteolysis in bone infection, suggesting that MYD88 and downstream RANKL regulators in osteocytes are therapeutic targets for osteolysis in periodontitis and osteomyelitis.


Asunto(s)
Pérdida de Hueso Alveolar , Osteólisis , Osteomielitis , Periodontitis , Ratones , Animales , Osteocitos/metabolismo , Osteólisis/inducido químicamente , Osteólisis/complicaciones , Osteólisis/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Ligando RANK/metabolismo , Porphyromonas gingivalis/metabolismo , Periodontitis/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Osteoclastos/metabolismo
15.
J Biol Chem ; 285(42): 32378-84, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20729214

RESUMEN

Aseptic loosening of orthopaedic implants is induced by wear particles generated from the polymeric and metallic components of the implants. Substantial evidence suggests that activation of Toll-like receptors (TLRs) may contribute to the biological activity of the wear particles. Although pathogen-associated molecular patterns (PAMPs) produced by Gram-positive bacteria are likely to be more common in patients with aseptic loosening, prior studies have focused on LPS, a TLR4-specific PAMP produced by Gram-negative bacteria. Here we show that both TLR2 and TLR4 contribute to the biological activity of titanium particles with adherent bacterial debris. In addition, lipoteichoic acid, a PAMP produced by Gram-positive bacteria that activates TLR2, can, like LPS, adhere to the particles and increase their biological activity, and the increased biological activity requires the presence of the cognate TLR. Moreover, three lines of evidence support the conclusion that TLR activation requires bacterially derived PAMPs and that endogenously produced alarmins are not sufficient. First, neither TLR2 nor TLR4 contribute to the activity of "endotoxin-free" particles as would be expected if alarmins are sufficient to activate the TLRs. Second, noncognate TLRs do not contribute to the activity of particles with adherent LPS or lipoteichoic acid as would be expected if alarmins are sufficient to activate the TLRs. Third, polymyxin B, which inactivates LPS, blocks the activity of particles with adherent LPS. These results support the hypothesis that PAMPs produced by low levels of bacterial colonization may contribute to aseptic loosening of orthopaedic implants.


Asunto(s)
Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/inmunología , Falla de Prótesis , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/inmunología , Animales , Antibacterianos/farmacología , Línea Celular , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/patogenicidad , Humanos , Lipopolisacáridos/inmunología , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Polimixina B/farmacología , Ácidos Teicoicos/inmunología , Titanio/inmunología , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
16.
J Orthop Res ; 39(3): 493-505, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32779803

RESUMEN

Wear particles from orthopedic implants cause aseptic loosening, the leading cause of implant revisions. The particles are phagocytosed by macrophages leading to activation of the nod-like receptor protein 3 (NLRP3) inflammasome and release of interleukin-1ß (IL-1ß) which then contributes to osteoclast differentiation and implant loosening. The mechanism of inflammasome activation by orthopedic particles is undetermined but other particles cause the cytosolic accumulation of the lysosomal cathepsin-family proteases which can activate the NLRP3 inflammasome. Here, we demonstrate that lysosome membrane disruption causes cathepsin release into the cytoplasm that drives both inflammasome activation and cell death but that these processes occur independently. Using wild-type and genetically-manipulated immortalized murine bone marrow derived macrophages and pharmacologic inhibitors, we found that NLRP3 and gasdermin D are required for particle-induced IL-1ß release but not for particle-induced cell death. In contrast, phagocytosis and lysosomal cathepsin release are critical for both IL-1ß release and cell death. Collectively, our findings identify the pan-cathepsin inhibitor Ca-074Me and the NLRP3 inflammasome inhibitor MCC950 as therapeutic interventions worth exploring in aseptic loosening of orthopedic implants. We also found that particle-induced activation of the NLRP3 inflammasome in pre-primed macrophages and cell death are not dependent on pathogen-associated molecular patterns adherent to the wear particles despite such pathogen-associated molecular patterns being critical for all other previously studied wear particle responses, including priming of the NLRP3 inflammasome.


Asunto(s)
Catepsinas/metabolismo , Lisosomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fagocitosis , Falla de Prótesis/etiología , Muerte Celular , Humanos , Interleucina-1beta/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos , Titanio
17.
Bone ; 143: 115733, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33157284

RESUMEN

Jab1, also known as Csn5/Cops5, is a key subunit of the COP9 Signalosome, a highly conserved macromolecular complex. We previously reported that the conditional knockout of Jab1 in mouse limb buds and chondrocytes results in severely shortened limbs and neonatal lethal chondrodysplasia, respectively. In this study, we further investigated the specific role of Jab1 in osteoblast differentiation and postnatal bone growth by characterizing a novel mouse model, the Osx-cre; Jab1flox/flox conditional knockout (Jab1 cKO) mouse, in which Jab1 is deleted in osteoblast precursor cells. Jab1 cKO mutant mice appeared normal at birth, but developed progressive dwarfism. Inevitably, all mutant mice died prior to weaning age. The histological and micro-computed tomography analysis of mutant long bones revealed severely altered bone microarchitecture, with a significant reduction in trabecular thickness. Moreover, Jab1 cKO mouse tibiae had a drastic decrease in mineralization near the epiphyseal growth plates, and Jab1 cKO mice also developed spontaneous fractures near the tibiofibular junction. Additionally, our cell culture studies demonstrated that Jab1 deletion in osteoblast precursors led to decreased mineralization and a reduced response to TGFß and BMP signaling. Moreover, an unbiased reporter screen also identified decreased TGFß activity in Jab1-knockdown osteoblasts. Thus, Jab1 is necessary for proper osteoblast differentiation and postnatal bone growth, likely in part through its positive regulation of the TGFß and BMP signaling pathways in osteoblast progenitor cells.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Péptido Hidrolasas , Animales , Complejo del Señalosoma COP9 , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Osteogénesis , Microtomografía por Rayos X
18.
Oncogene ; 39(23): 4581-4591, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32390003

RESUMEN

Osteosarcoma (OS) is the most common primary bone cancer and ranks amongst the leading causes of cancer mortality in young adults. Jun activation domain-binding protein 1 (JAB1) is overexpressed in many cancers and has recently emerged as a novel target for cancer treatment. However, the role of JAB1 in osteosarcoma was virtually unknown. In this study, we demonstrate that JAB1-knockdown in malignant osteosarcoma cell lines significantly reduced their oncogenic properties, including proliferation, colony formation, and motility. We also performed RNA-sequencing analysis in JAB1-knockdown OS cells and identified 4110 genes that are significantly differentially expressed. This demonstrated for the first time that JAB1 regulates a large and specific transcriptome in cancer. We also found that JAB1 is overexpressed in human OS and correlates with a poor prognosis. Moreover, we generated a novel mouse model that overexpresses Jab1 specifically in osteoblasts upon a TP53 heterozygous sensitizing background. Interestingly, by 13 months of age, a significant proportion of these mice spontaneously developed conventional OS. Finally, we demonstrate that a novel, highly specific small molecule inhibitor of JAB1, CSN5i-3, reduces osteosarcoma cell viability, and has specific effects on the ubiquitin-proteasome system in OS. Thus, we show for the first time that the overexpression of JAB1 in vivo can result in accelerated spontaneous tumor formation in a p53-dependent manner. In summary, JAB1 might be a unique target for the treatment of osteosarcoma and other cancers.


Asunto(s)
Neoplasias Óseas/patología , Complejo del Señalosoma COP9/metabolismo , Carcinogénesis/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Osteosarcoma/patología , Péptido Hidrolasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Neoplasias Óseas/genética , Complejo del Señalosoma COP9/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Reparación del ADN/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Osteosarcoma/genética , Péptido Hidrolasas/genética
19.
Eur J Oral Sci ; 117(6): 625-35, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20121924

RESUMEN

A new spontaneous mouse mutant (ntl) with autosomal-recessive osteopetrosis was characterized. These mice formed tartrate-resistant acid phosphate (TRAP)-positive osteoclasts but their osteoclasts had no ruffled border and did not resorb bone. These mice displayed no tooth eruption or tooth root formation. Adult mutant mice developed odontoma-like proliferations near the proximal ends of the incisors. Intraperitoneal injection of progenitor cells from the liver of 16.5 days postcoitum wild-type embryos into newborn mutants rescued the osteopetrosis phenotype, indicating that the defects were intrinsic to the osteoclasts. Our findings not only provide further support for a critical role of osteoclasts in tooth eruption and tooth root development, but also suggest that the perturbation of the homeostasis of the odontogenic precursors of the incisors is primarily responsible for the development of the odontoma-like proliferations in this osteopetrosis mutant. Genetic mapping has narrowed down the location of the mutant allele to a genetic interval of 3.2 cM on mouse chromosome 17.


Asunto(s)
Odontoma/genética , Osteoclastos/fisiología , Osteopetrosis/genética , Raíz del Diente/anomalías , Fosfatasa Ácida/análisis , Alelos , Animales , Biomarcadores/análisis , Resorción Ósea/genética , Resorción Ósea/patología , Células Cultivadas , Canales de Cloruro/análisis , Cromosomas de los Mamíferos/genética , Modelos Animales de Enfermedad , Genes Recesivos/genética , Ligamiento Genético/genética , Genotipo , Homeostasis/genética , Incisivo/anomalías , Isoenzimas/análisis , Hígado/citología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Mutantes , Mutación/genética , Odontogénesis/genética , Fenotipo , Células Madre/fisiología , Fosfatasa Ácida Tartratorresistente , Erupción Dental/genética
20.
J Am Acad Orthop Surg ; 17(8): 515-27, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19652033

RESUMEN

Osteosarcoma, the most common bone sarcoma, affects approximately 560 children and adolescents annually in the United States. The incidence of new diagnoses peaks in the second decade of life. Twenty percent of patients present with clinically detectable metastases, with micrometastases presumed to be present in many of the remaining patients. Treatment typically includes preoperative chemotherapy, surgical resection, and postoperative chemotherapy. Limb-salvage procedures with wide surgical margins are the mainstay of surgical intervention. Advances in chemotherapy protocols have led to a 5-year survival rate of 60% to 78%. Among the goals of future treatment regimens are improved chemotherapeutic agents with higher specificity and lower toxicity.


Asunto(s)
Neoplasias Óseas , Procedimientos Ortopédicos/métodos , Osteosarcoma , Adolescente , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/mortalidad , Neoplasias Óseas/terapia , Niño , Terapia Combinada , Quimioterapia , Humanos , Estadificación de Neoplasias , Osteosarcoma/diagnóstico , Osteosarcoma/mortalidad , Osteosarcoma/terapia , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA