Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 162(6): 1365-78, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26359988

RESUMEN

The cytokine TWEAK and its cognate receptor Fn14 are members of the TNF/TNFR superfamily and are upregulated in tumors. We found that Fn14, when expressed in tumors, causes cachexia and that antibodies against Fn14 dramatically extended lifespan by inhibiting tumor-induced weight loss although having only moderate inhibitory effects on tumor growth. Anti-Fn14 antibodies prevented tumor-induced inflammation and loss of fat and muscle mass. Fn14 signaling in the tumor, rather than host, is responsible for inducing this cachexia because tumors in Fn14- and TWEAK-deficient hosts developed cachexia that was comparable to that of wild-type mice. These results extend the role of Fn14 in wound repair and muscle development to involvement in the etiology of cachexia and indicate that Fn14 antibodies may be a promising approach to treat cachexia, thereby extending lifespan and improving quality of life for cancer patients.


Asunto(s)
Caquexia/tratamiento farmacológico , Neoplasias/patología , Receptores del Factor de Necrosis Tumoral/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/administración & dosificación , Atrofia/tratamiento farmacológico , Caquexia/patología , Muerte Celular , Neoplasias del Colon/tratamiento farmacológico , Citocina TWEAK , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Desarrollo de Músculos , Neoplasias/metabolismo , Receptores del Factor de Necrosis Tumoral/química , Receptores del Factor de Necrosis Tumoral/metabolismo , Alineación de Secuencia , Transducción de Señal , Receptor de TWEAK , Factores de Necrosis Tumoral/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(27): e2211041120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364105

RESUMEN

The molecular events governing skeletal muscle glucose uptake have pharmacological potential for managing insulin resistance in conditions such as obesity, diabetes, and cancer. With no current pharmacological treatments to target skeletal muscle insulin sensitivity, there is an unmet need to identify the molecular mechanisms that control insulin sensitivity in skeletal muscle. Here, the Rho guanine dissociation inhibitor α (RhoGDIα) is identified as a point of control in the regulation of insulin sensitivity. In skeletal muscle cells, RhoGDIα interacted with, and thereby inhibited, the Rho GTPase Rac1. In response to insulin, RhoGDIα was phosphorylated at S101 and Rac1 dissociated from RhoGDIα to facilitate skeletal muscle GLUT4 translocation. Accordingly, siRNA-mediated RhoGDIα depletion increased Rac1 activity and elevated GLUT4 translocation. Consistent with RhoGDIα's inhibitory effect, rAAV-mediated RhoGDIα overexpression in mouse muscle decreased insulin-stimulated glucose uptake and was detrimental to whole-body glucose tolerance. Aligning with RhoGDIα's negative role in insulin sensitivity, RhoGDIα protein content was elevated in skeletal muscle from insulin-resistant patients with type 2 diabetes. These data identify RhoGDIα as a clinically relevant controller of skeletal muscle insulin sensitivity and whole-body glucose homeostasis, mechanistically by modulating Rac1 activity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Inhibidor alfa de Disociación del Nucleótido Guanina rho , Animales , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38995522

RESUMEN

Many organs of the body are susceptible to cancer development. However, striated muscles-which include skeletal and cardiac muscles-are rarely the sites of primary cancers. Most deaths from cancer arise due to complications associated with the development of secondary metastatic tumours, for which there are few effective therapies. However, as with primary cancers, the establishment of metastatic tumours in striated muscle accounts for a disproportionately small fraction of secondary tumours, relative to the proportion of body composition. Examining why primary and metastatic cancers are comparatively rare in striated muscle presents an opportunity to better understand mechanisms that can influence cancer cell biology. To gain insights into the incidence and distribution of muscle metastases, this review presents a definitive summary of the 210 case studies of metastasis in muscle published since 2010. To examine why metastases rarely form in muscles, this review considers the mechanisms currently proposed to render muscle an inhospitable environment for cancers. The "seed and soil" hypothesis proposes that tissues' differences in susceptibility to metastatic colonization are due to differing host microenvironments that promote or suppress metastatic growth to varying degrees. As such, the "soil" within muscle may not be conducive to cancer growth. Gaining a greater understanding of the mechanisms that underpin the resistance of muscles to cancer may provide new insights into mechanisms of tumour growth and progression, and offer opportunities to leverage insights into the development of interventions with the potential to inhibit metastasis in susceptible tissues.

4.
Nature ; 574(7776): 63-68, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31554967

RESUMEN

The gp130 receptor cytokines IL-6 and CNTF improve metabolic homeostasis but have limited therapeutic use for the treatment of type 2 diabetes. Accordingly, we engineered the gp130 ligand IC7Fc, in which one gp130-binding site is removed from IL-6 and replaced with the LIF-receptor-binding site from CNTF, fused with the Fc domain of immunoglobulin G, creating a cytokine with CNTF-like, but IL-6-receptor-dependent, signalling. Here we show that IC7Fc improves glucose tolerance and hyperglycaemia and prevents weight gain and liver steatosis in mice. In addition, IC7Fc either increases, or prevents the loss of, skeletal muscle mass by activation of the transcriptional regulator YAP1. In human-cell-based assays, and in non-human primates, IC7Fc treatment results in no signs of inflammation or immunogenicity. Thus, IC7Fc is a realistic next-generation biological agent for the treatment of type 2 diabetes and muscle atrophy, disorders that are currently pandemic.


Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Citocinas/síntesis química , Citocinas/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inmunoglobulina G/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Unión Competitiva , Citocinas/química , Diabetes Mellitus Tipo 2/metabolismo , Diseño de Fármacos , Hígado Graso/prevención & control , Prueba de Tolerancia a la Glucosa , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Incretinas/metabolismo , Interleucina-6/antagonistas & inhibidores , Interleucina-6/metabolismo , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Obesidad/metabolismo , Páncreas/metabolismo , Fosfoproteínas/metabolismo , Ingeniería de Proteínas , Receptores de Interleucina-6/metabolismo , Transducción de Señal , Factores de Transcripción , Aumento de Peso/efectos de los fármacos , Proteínas Señalizadoras YAP
5.
Pharmacol Res ; 199: 107048, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38145833

RESUMEN

High baseline clearance of immune checkpoint inhibitors (ICIs), independent of dose or systemic exposure, is associated with cachexia and poor outcomes in cancer patients. Mechanisms linking ICI clearance, cachexia and ICI therapy failure are unknown. Here, we evaluate in four murine models and across multiple antibodies whether altered baseline catabolic clearance of administered antibody requires a tumor and/or cachexia and whether medical reversal of cachexia phenotype can alleviate altered clearance. Key findings include mild cachexia phenotype and lack of elevated pembrolizumab clearance in the MC38 tumor-bearing model. We also observed severe cachexia and decreased, instead of increased, baseline pembrolizumab clearance in the tumor-free cisplatin-induced cachexia model. Liver Fcgrt expression correlated with altered baseline catabolic clearance, though elevated clearance was still observed with antibodies having no (human IgA) or reduced (human H310Q IgG1) FcRn binding. We conclude cachexia phenotype coincides with altered antibody clearance, though tumor presence is neither sufficient nor necessary for altered clearance in immunocompetent mice. Magnitude and direction of clearance alteration correlated with hepatic Fcgrt, suggesting changes in FcRn expression and/or recycling function may be partially responsible, though factors beyond FcRn also contribute to altered clearance in cachexia.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/metabolismo , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Hígado/metabolismo , Inmunoglobulina G/metabolismo
6.
Am J Physiol Cell Physiol ; 325(6): C1567-C1582, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955121

RESUMEN

Ubiquitination is an important post-translational modification (PTM) for protein substrates, whereby ubiquitin is added to proteins through the coordinated activity of activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The E3s provide key functions in the recognition of specific protein substrates to be ubiquitinated and aid in determining their proteolytic or nonproteolytic fates, which has led to their study as indicators of altered cellular processes. MuRF1 and MAFbx/Atrogin-1 were two of the first E3 ubiquitin ligases identified as being upregulated in a range of different skeletal muscle atrophy models. Since their discovery, the expression of these E3 ubiquitin ligases has often been studied as a surrogate measure of changes to bulk protein degradation rates. However, emerging evidence has highlighted the dynamic and complex regulation of the ubiquitin proteasome system (UPS) in skeletal muscle and demonstrated that protein ubiquitination is not necessarily equivalent to protein degradation. These observations highlight the potential challenges of quantifying E3 ubiquitin ligases as markers of protein degradation rates or ubiquitin proteasome system (UPS) activation. This perspective examines the usefulness of monitoring E3 ubiquitin ligases for determining specific or bulk protein degradation rates in the settings of skeletal muscle atrophy. Specific questions that remain unanswered within the skeletal muscle atrophy field are also identified, to encourage the pursuit of new research that will be critical in moving forward our understanding of the molecular mechanisms that govern protein function and degradation in muscle.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/patología , Músculo Esquelético/metabolismo , Ubiquitina/metabolismo
7.
Mol Cell Proteomics ; 20: 100050, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33516941

RESUMEN

Ubiquitination is a posttranslational protein modification that has been shown to have a range of effects, including regulation of protein function, interaction, localization, and degradation. We have previously shown that the muscle-specific ubiquitin E3 ligase, ASB2ß, is downregulated in models of muscle growth and that overexpression ASB2ß is sufficient to induce muscle atrophy. To gain insight into the effects of increased ASB2ß expression on skeletal muscle mass and function, we used liquid chromatography coupled to tandem mass spectrometry to investigate ASB2ß-mediated changes to the skeletal muscle proteome and ubiquitinome, via a parallel analysis of remnant diGly-modified peptides. The results show that viral vector-mediated ASB2ß overexpression in murine muscles causes progressive muscle atrophy and impairment of force-producing capacity, while ASB2ß knockdown induces mild muscle hypertrophy. ASB2ß-induced muscle atrophy and dysfunction were associated with the early downregulation of mitochondrial and contractile protein abundance and the upregulation of proteins involved in proteasome-mediated protein degradation (including other E3 ligases), protein synthesis, and the cytoskeleton/sarcomere. The overexpression ASB2ß also resulted in marked changes in protein ubiquitination; however, there was no simple relationship between changes in ubiquitination status and protein abundance. To investigate proteins that interact with ASB2ß and, therefore, potential ASB2ß targets, Flag-tagged wild-type ASB2ß, and a mutant ASB2ß lacking the C-terminal SOCS box domain (dSOCS) were immunoprecipitated from C2C12 myotubes and subjected to label-free proteomic analysis to determine the ASB2ß interactome. ASB2ß was found to interact with a range of cytoskeletal and nuclear proteins. When combined with the in vivo ubiquitinomic data, our studies have identified novel putative ASB2ß target substrates that warrant further investigation. These findings provide novel insight into the complexity of proteome and ubiquitinome changes that occur during E3 ligase-mediated skeletal muscle atrophy and dysfunction.


Asunto(s)
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Femenino , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Proteoma , Ubiquitinación
8.
Mol Cell Proteomics ; 20: 100030, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33583770

RESUMEN

Many cell surface and secreted proteins are modified by the covalent addition of glycans that play an important role in the development of multicellular organisms. These glycan modifications enable communication between cells and the extracellular matrix via interactions with specific glycan-binding lectins and the regulation of receptor-mediated signaling. Aberrant protein glycosylation has been associated with the development of several muscular diseases, suggesting essential glycan- and lectin-mediated functions in myogenesis and muscle development, but our molecular understanding of the precise glycans, catalytic enzymes, and lectins involved remains only partially understood. Here, we quantified dynamic remodeling of the membrane-associated proteome during a time-course of myogenesis in cell culture. We observed wide-spread changes in the abundance of several important lectins and enzymes facilitating glycan biosynthesis. Glycomics-based quantification of released N-linked glycans confirmed remodeling of the glycome consistent with the regulation of glycosyltransferases and glycosidases responsible for their formation including a previously unknown digalactose-to-sialic acid switch supporting a functional role of these glycoepitopes in myogenesis. Furthermore, dynamic quantitative glycoproteomic analysis with multiplexed stable isotope labeling and analysis of enriched glycopeptides with multiple fragmentation approaches identified glycoproteins modified by these regulated glycans including several integrins and growth factor receptors. Myogenesis was also associated with the regulation of several lectins, most notably the upregulation of galectin-1 (LGALS1). CRISPR/Cas9-mediated deletion of Lgals1 inhibited differentiation and myotube formation, suggesting an early functional role of galectin-1 in the myogenic program. Importantly, similar changes in N-glycosylation and the upregulation of galectin-1 during postnatal skeletal muscle development were observed in mice. Treatment of new-born mice with recombinant adeno-associated viruses to overexpress galectin-1 in the musculature resulted in enhanced muscle mass. Our data form a valuable resource to further understand the glycobiology of myogenesis and will aid the development of intervention strategies to promote healthy muscle development or regeneration.


Asunto(s)
Galectina 1/metabolismo , Glicopéptidos/metabolismo , Desarrollo de Músculos , Animales , Línea Celular , Galectina 1/genética , Glicómica , Glicosilación , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica , Ratas
9.
Circulation ; 143(16): 1614-1628, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33682422

RESUMEN

BACKGROUND: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. METHODS: Single-nucleus RNA sequencing of 54 140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA sequencing and the Assay for Transposase-Accessible Chromatin using sequencing were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. RESULTS: Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate that the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. CONCLUSIONS: These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.


Asunto(s)
Corazón/fisiopatología , Receptores de Progesterona/metabolismo , Femenino , Humanos , Masculino , Factores Sexuales
10.
Am J Physiol Cell Physiol ; 320(6): C987-C999, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33881936

RESUMEN

Polyamines have been shown to be absolutely required for protein synthesis and cell growth. The serine/threonine kinase, the mechanistic target of rapamycin complex 1 (mTORC1), also plays a fundamental role in the regulation of protein turnover and cell size, including in skeletal muscle, where mTORC1 is sufficient to increase protein synthesis and muscle fiber size, and is necessary for mechanical overload-induced muscle hypertrophy. Recent evidence suggests that mTORC1 may regulate the polyamine metabolic pathway, however, there is currently no evidence in skeletal muscle. This study examined changes in polyamine pathway proteins during muscle hypertrophy induced by mechanical overload (7 days), with and without the mTORC1 inhibitor, rapamycin, and during muscle atrophy induced by food deprivation (48 h) and denervation (7 days) in mice. Mechanical overload induced an increase in mTORC1 signaling, protein synthesis and muscle mass, and these were associated with rapamycin-sensitive increases in adenosylmethione decarboxylase 1 (Amd1), spermidine synthase (SpdSyn), and c-Myc. Food deprivation decreased mTORC1 signaling, protein synthesis, and muscle mass, accompanied by a decrease in spermidine/spermine acetyltransferase 1 (Sat1). Denervation, resulted increased mTORC1 signaling and protein synthesis, and decreased muscle mass, which was associated with an increase in SpdSyn, spermine synthase (SpmSyn), and c-Myc. Combined, these data show that polyamine pathway enzymes are differentially regulated in models of altered mechanical and metabolic stress, and that Amd1 and SpdSyn are, in part, regulated in a mTORC1-dependent manner. Furthermore, these data suggest that polyamines may play a role in the adaptive response to stressors in skeletal muscle.


Asunto(s)
Hipertrofia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Poliaminas/metabolismo , Transducción de Señal/fisiología , Acetiltransferasas/metabolismo , Adenosilmetionina Descarboxilasa/metabolismo , Animales , Femenino , Ratones , Proteínas Musculares/metabolismo , Espermidina Sintasa/metabolismo
11.
Am J Physiol Cell Physiol ; 320(6): C956-C965, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33729835

RESUMEN

The dystrophin-glycoprotein complex (DGC) is a multiprotein structure required to maintain muscle fiber membrane integrity, transmit force by linking the actin cytoskeleton with the extracellular matrix, and maintain muscle homeostasis. Membrane localization of dystrophin is perturbed in muscles wasting as a consequence of cancer cachexia, tenotomy, and advanced aging, which are all associated with low level, chronic inflammation. Strategies to preserve dystrophin expression at the sarcolemma might therefore combat muscle wasting. Phosphorylation of dystrophin serine 3059 (S3059) enhances the interaction between dystrophin and ß-dystroglycan. To test the contribution of amino acid phosphorylation to muscle fiber size changes, dystrophin constructs with phospho-null and phosphomimetic mutations were transfected into C2C12 muscle cells or AAV-293 cells in the presence or absence of kinase inhibitors/activators to assess effects on myotube diameter and protein function. Overexpression of a dystrophin construct with a phospho-null mutation at S3059 in vitro reduced myotube size in healthy C2C12 cells. Conversely overexpression of a phosphomimetic mutation at S3059 attenuated inflammation-induced myotube atrophy. Increased ERK activation by addition of phorbol myristate acetate (PMA) also reduced inflammation-associated myotube atrophy and increased the interaction between dystrophin and ß-dystroglycan. These findings demonstrate a link between increased ERK activation, dystrophin S3059 phosphorylation, stabilization of the DGC, and the regulation of muscle fiber size. Interventions that increase dystrophin S3059 phosphorylation to promote stronger binding of dystrophin to ß-dystroglycan may have therapeutic potential for attenuation of inflammation-associated muscle wasting.


Asunto(s)
Distrofina/metabolismo , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fosforilación/fisiología , Animales , Caquexia/metabolismo , Membrana Celular/metabolismo , Distroglicanos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Ratones , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Sarcolema/metabolismo
12.
Am J Hum Genet ; 102(5): 845-857, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706347

RESUMEN

Loss of expression of ACTN3, due to homozygosity of the common null polymorphism (p.Arg577X), is underrepresented in elite sprint/power athletes and has been associated with reduced muscle mass and strength in humans and mice. To investigate ACTN3 gene dosage in performance and whether expression could enhance muscle force, we performed meta-analysis and expression studies. Our general meta-analysis using a Bayesian random effects model in elite sprint/power athlete cohorts demonstrated a consistent homozygous-group effect across studies (per allele OR = 1.4, 95% CI 1.3-1.6) but substantial heterogeneity in heterozygotes. In mouse muscle, rAAV-mediated gene transfer overexpressed and rescued α-actinin-3 expression. Contrary to expectation, in vivo "doping" of ACTN3 at low to moderate doses demonstrated an absence of any change in function. At high doses, ACTN3 is toxic and detrimental to force generation, to demonstrate gene doping with supposedly performance-enhancing isoforms of sarcomeric proteins can be detrimental for muscle function. Restoration of α-actinin-3 did not enhance muscle mass but highlighted the primary role of α-actinin-3 in modulating muscle metabolism with altered fatiguability. This is the first study to express a Z-disk protein in healthy skeletal muscle and measure the in vivo effect. The sensitive balance of the sarcomeric proteins and muscle function has relevant implications in areas of gene doping in performance and therapy for neuromuscular disease.


Asunto(s)
Actinina/genética , Músculo Esquelético/fisiología , Anaerobiosis , Animales , Animales Recién Nacidos , Atletas , Calcineurina/metabolismo , Dependovirus/metabolismo , Regulación hacia Abajo/genética , Estudio de Asociación del Genoma Completo , Heterocigoto , Homocigoto , Humanos , Ratones Endogámicos C57BL , Fatiga Muscular , Fibras Musculares Esqueléticas/metabolismo , Tamaño de los Órganos , Oxidación-Reducción
13.
FASEB J ; 34(4): 5697-5714, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32141144

RESUMEN

Type 2 diabetes (T2D) manifests from inadequate glucose control due to insulin resistance, hypoinsulinemia, and deteriorating pancreatic ß-cell function. The pro-inflammatory factor Activin has been implicated as a positive correlate of severity in T2D patients, and as a negative regulator of glucose uptake by skeletal muscle, and of pancreatic ß-cell phenotype in mice. Accordingly, we sought to determine whether intervention with the Activin antagonist Follistatin can ameliorate the diabetic pathology. Here, we report that an intravenous Follistatin gene delivery intervention with tropism for striated muscle reduced the serum concentrations of Activin B and improved glycemic control in the db/db mouse model of T2D. Treatment reversed the hyperglycemic progression with a corresponding reduction in the percentage of glycated-hemoglobin to levels similar to lean, healthy mice. Follistatin gene delivery promoted insulinemia and abundance of insulin-positive pancreatic ß-cells, even when treatment was administered to mice with advanced diabetes, supporting a mechanism for improved glycemic control associated with maintenance of functional ß-cells. Our data demonstrate that single-dose intravascular Follistatin gene delivery can ameliorate the diabetic progression and improve prognostic markers of disease. These findings are consistent with other observations of Activin-mediated mechanisms exerting deleterious effects in models of obesity and diabetes, and suggest that interventions that attenuate Activin signaling could help further understanding of T2D and the development of novel T2D therapeutics.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Folistatina/genética , Técnicas de Transferencia de Gen , Terapia Genética , Control Glucémico , Hiperglucemia/terapia , Administración Intravenosa , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Folistatina/administración & dosificación , Hiperglucemia/genética , Resistencia a la Insulina , Ratones
14.
Proc Natl Acad Sci U S A ; 115(5): E866-E875, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29348202

RESUMEN

Growth/differentiation factor 8 (GDF8), or myostatin, negatively regulates muscle mass. GDF8 is held in a latent state through interactions with its N-terminal prodomain, much like TGF-ß. Using a combination of small-angle X-ray scattering and mutagenesis, we characterized the interactions of GDF8 with its prodomain. Our results show that the prodomain:GDF8 complex can exist in a fully latent state and an activated or "triggered" state where the prodomain remains in complex with the mature domain. However, these states are not reversible, indicating the latent GDF8 is "spring-loaded." Structural analysis shows that the prodomain:GDF8 complex adopts an "open" configuration, distinct from the latency state of TGF-ß and more similar to the open state of Activin A and BMP9 (nonlatent complexes). We determined that GDF8 maintains similar features for latency, including the alpha-1 helix and fastener elements, and identified a series of mutations in the prodomain of GDF8 that alleviate latency, including I56E, which does not require activation by the protease Tolloid. In vivo, active GDF8 variants were potent negative regulators of muscle mass, compared with WT GDF8. Collectively, these results help characterize the latency and activation mechanisms of GDF8.


Asunto(s)
Miostatina/química , Activinas/química , Animales , Atrofia/patología , Diferenciación Celular , Dependovirus , Factor 2 de Diferenciación de Crecimiento , Factores de Diferenciación de Crecimiento/química , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis , Mutación , Miostatina/genética , Dominios Proteicos , Dispersión del Ángulo Pequeño , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 318(4): H840-H852, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32142359

RESUMEN

Diabetic cardiomyopathy is a distinct form of heart disease that represents a major cause of death and disability in diabetic patients, particularly, the more prevalent type 2 diabetes patient population. In the current study, we investigated whether administration of recombinant adeno-associated viral vectors carrying a constitutively active phosphoinositide 3-kinase (PI3K)(p110α) construct (rAAV6-caPI3K) at a clinically relevant time point attenuates diabetic cardiomyopathy in a preclinical type 2 diabetes (T2D) model. T2D was induced by a combination of a high-fat diet (42% energy intake from lipid) and low-dose streptozotocin (three consecutive intraperitoneal injections of 55 mg/kg body wt), and confirmed by increased body weight, mild hyperglycemia, and impaired glucose tolerance (all P < 0.05 vs. nondiabetic mice). After 18 wk of untreated diabetes, impaired left ventricular (LV) systolic dysfunction was evident, as confirmed by reduced fractional shortening and velocity of circumferential fiber shortening (Vcfc, all P < 0.01 vs. baseline measurement). A single tail vein injection of rAAV6-caPI3K gene therapy (2×1011vector genomes) was then administered. Mice were followed for an additional 8 wk before end point. A single injection of cardiac targeted rAAV6-caPI3K attenuated diabetes-induced cardiac remodeling by limiting cardiac fibrosis (reduced interstitial and perivascular collagen deposition, P < 0.01 vs. T2D mice) and cardiomyocyte hypertrophy (reduced cardiomyocyte size and Nppa gene expression, P < 0.001 and P < 0.05 vs. T2D mice, respectively). The diabetes-induced LV systolic dysfunction was reversed with rAAV6-caPI3K, as demonstrated by improved fractional shortening and velocity of circumferential fiber shortening (all P < 0.05 vs pre-AAV measurement). This cardioprotection occurred in combination with reduced LV reactive oxygen species (P < 0.05 vs. T2D mice) and an associated decrease in markers of endoplasmic reticulum stress (reduced Grp94 and Chop, all P < 0.05 vs. T2D mice). Together, our findings demonstrate that a cardiac-selective increase in PI3K(p110α), via rAAV6-caPI3K, attenuates T2D-induced diabetic cardiomyopathy, providing proof of concept for potential translation to the clinic.NEW & NOTEWORTHY Diabetes remains a major cause of death and disability worldwide (and its resultant heart failure burden), despite current care. The lack of existing management of heart failure in the context of the poorer prognosis of concomitant diabetes represents an unmet clinical need. In the present study, we now demonstrate that delayed intervention with PI3K gene therapy (rAAV6-caPI3K), administered as a single dose in mice with preexisting type 2 diabetes, attenuates several characteristics of diabetic cardiomyopathy, including diabetes-induced impairments in cardiac remodeling, oxidative stress, and function. Our discovery here contributes to the previous body of work, suggesting the cardioprotective effects of PI3K(p110α) could be a novel therapeutic approach to reduce the progression to heart failure and death in diabetes-affected patients.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/terapia , Terapia Genética/métodos , Animales , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/etiología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/patología , Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico , Fibrosis , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Masculino , Ratones , Miocardio/metabolismo , Especies Reactivas de Oxígeno , Remodelación Ventricular
16.
Proc Natl Acad Sci U S A ; 114(26): E5266-E5275, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28607086

RESUMEN

The transforming growth factor-ß (TGF-ß) network of ligands and intracellular signaling proteins is a subject of intense interest within the field of skeletal muscle biology. To define the relative contribution of endogenous TGF-ß proteins to the negative regulation of muscle mass via their activation of the Smad2/3 signaling axis, we used local injection of adeno-associated viral vectors (AAVs) encoding ligand-specific antagonists into the tibialis anterior (TA) muscles of C57BL/6 mice. Eight weeks after AAV injection, inhibition of activin A and activin B signaling produced moderate (∼20%), but significant, increases in TA mass, indicating that endogenous activins repress muscle growth. Inhibiting myostatin induced a more profound increase in muscle mass (∼45%), demonstrating a more prominent role for this ligand as a negative regulator of adult muscle mass. Remarkably, codelivery of activin and myostatin inhibitors induced a synergistic response, resulting in muscle mass increasing by as much as 150%. Transcription and protein analysis indicated that this substantial hypertrophy was associated with both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis (recently identified as a positive regulator of muscle mass). Analyses indicated that hypertrophy was primarily driven by an increase in protein synthesis, but a reduction in ubiquitin-dependent protein degradation pathways was also observed. In models of muscular dystrophy and cancer cachexia, combined inhibition of activins and myostatin increased mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of specifically targeting multiple Smad2/3-activating ligands in skeletal muscle.


Asunto(s)
Dependovirus , Vectores Genéticos , Proteínas Musculares , Músculo Esquelético/crecimiento & desarrollo , Enfermedades Musculares , Transducción de Señal , Factor de Crecimiento Transformador beta , Activinas/antagonistas & inhibidores , Activinas/genética , Activinas/metabolismo , Animales , Marcación de Gen , Masculino , Ratones , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Tamaño de los Órganos/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
17.
Proc Natl Acad Sci U S A ; 114(40): E8372-E8381, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28916735

RESUMEN

The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including ß-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both ß-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.


Asunto(s)
Factores Biológicos/metabolismo , Puntos de Control del Ciclo Celular , Miocitos Cardíacos/metabolismo , Organoides/metabolismo , Células Madre Pluripotentes/metabolismo , Regeneración/fisiología , Adulto , Animales , Diferenciación Celular , Daño del ADN , Humanos , Masculino , Miocitos Cardíacos/citología , Organoides/citología , Células Madre Pluripotentes/citología , Ratas Sprague-Dawley
18.
Am J Physiol Endocrinol Metab ; 316(2): E293-E304, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30512991

RESUMEN

Mitochondrial dynamics refers to the constant remodeling of mitochondrial populations by multiple cellular pathways that help maintain mitochondrial health and function. Disruptions in mitochondrial dynamics often lead to mitochondrial dysfunction, which is frequently associated with disease in rodents and humans. Consistent with this, obesity is associated with reduced mitochondrial function in white adipose tissue, partly via alterations in mitochondrial dynamics. Several proteins, including the E3 ubiquitin ligase membrane-associated RING-CH-type finger 5 (MARCH5), are known to regulate mitochondrial dynamics; however, the role of these proteins in adipocytes has been poorly studied. Here, we show that MARCH5 is regulated by peroxisome proliferator-activated receptor-γ (PPARγ) during adipogenesis and is correlated with fat mass across a panel of genetically diverse mouse strains, in ob/ob mice, and in humans. Furthermore, manipulation of MARCH5 expression in vitro and in vivo alters mitochondrial function, affects cellular metabolism, and leads to differential regulation of several metabolic genes. Thus our data demonstrate an association between mitochondrial dynamics and metabolism that defines MARCH5 as a critical link between these interconnected pathways.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Proteínas de la Membrana/metabolismo , Síndrome Metabólico/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Obesidad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células 3T3-L1 , Adipogénesis , Adulto , Animales , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Proteínas Mitocondriales/genética , PPAR gamma/genética , PPAR gamma/metabolismo , Ubiquitina-Proteína Ligasas/genética
20.
Clin Sci (Lond) ; 132(3): 381-397, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29358507

RESUMEN

We previously showed that medium chain acyl-coenzyme A dehydrogenase (MCAD, key regulator of fatty acid oxidation) is positively modulated in the heart by the cardioprotective kinase, phosphoinositide 3-kinase (PI3K(p110α)). Disturbances in cardiac metabolism are a feature of heart failure (HF) patients and targeting metabolic defects is considered a potential therapeutic approach. The specific role of MCAD in the adult heart is unknown. To examine the role of MCAD in the heart and to assess the therapeutic potential of increasing MCAD in the failing heart, we developed a gene therapy tool using recombinant adeno-associated viral vectors (rAAV) encoding MCAD. We hypothesised that increasing MCAD expression may recapitulate the cardioprotective properties of PI3K(p110α). rAAV6:MCAD or rAAV6:control was delivered to healthy adult mice and to mice with pre-existing pathological hypertrophy and cardiac dysfunction due to transverse aortic constriction (TAC). In healthy mice, rAAV6:MCAD induced physiological hypertrophy (increase in heart size, normal systolic function and increased capillary density). In response to TAC (~15 weeks), heart weight/tibia length increased by ~60% in control mice and ~45% in rAAV6:MCAD mice compared with sham. This was associated with an increase in cardiomyocyte cross-sectional area in both TAC groups which was similar. However, hypertrophy in TAC rAAV6:MCAD mice was associated with less fibrosis, a trend for increased capillary density and a more favourable molecular profile compared with TAC rAAV6:control mice. In summary, MCAD induced physiological cardiac hypertrophy in healthy adult mice and attenuated features of pathological remodelling in a cardiac disease model.


Asunto(s)
Cardiomegalia/terapia , Terapia Genética , Insuficiencia Cardíaca/tratamiento farmacológico , Sustancias Protectoras/farmacología , Animales , Cardiomegalia/genética , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fosfatidilinositol 3-Quinasa/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA