Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Am J Kidney Dis ; 83(4): 435-444.e1, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37956953

RESUMEN

RATIONALE & OBJECTIVE: The standard of care (SoC) group of randomized controlled trials (RCTs) is a useful setting to explore the secular trends in kidney disease progression because implementation of best clinical practices is pursued for all patients enrolled in trials. This meta-analysis evaluated the secular trend in the change of glomerular filtration rate (GFR) decline in the SoC arm of RCTs in chronic kidney disease (CKD) published in the last 30 years. STUDY DESIGN: Systematic review and meta-analysis of the SoC arms of RCTs analyzed as an observational study. SETTING & STUDY POPULATIONS: Adult patients with CKD enrolled in the SoC arm of RCTs. SELECTION CRITERIA FOR STUDIES: Phase 3 RCTs evaluating GFR decline as an outcome in SoC arms. DATA EXTRACTION: Two independent reviewers evaluated RCTs for eligibility and extracted relevant data. ANALYTICAL APPROACH: The mean of GFR declines extracted in the SoC arm of selected RCTs were pooled by using a random effects model. Meta-regression analyses were performed to identify factors that may explain heterogeneity. RESULTS: The SoC arms from 92 RCTs were included in the meta-analysis with a total of 32,202 patients. The overall mean GFR decline was-4.00 (95% CI, -4.55 to-3.44) mL/min/1.73m2 per year in the SoC arms with a high level of heterogeneity (I2, 98.4% [95% CI, 98.2-98.5], P<0.001). Meta-regression analysis showed an association between publication year (ß estimate, 0.09 [95% CI, 0.032-0.148], P=0.003) and reduction in GFR over time. When evaluating publication decade categorically, GFR decline was-5.44 (95% CI, -7.15 to-3.73), -3.92 (95% CI, -4.82 to-3.02), and -3.20 (95% CI, -3.75 to -2.64) mL/min/1.73m2 per year during 1991-2000, 2001-2010, and 2011-2023, respectively. Using meta-regression, the heterogeneity of GFR decline was mainly explained by age and proteinuria. LIMITATIONS: Different methods assessing GFR in selected trials and observational design of the study. CONCLUSIONS: In the last 3 decades, GFR decline has decreased over time in patients enrolled in RCTs who received the standard of care. TRIAL REGISTRATION: Registered at PROSPERO with record number CRD42022357704. PLAIN-LANGUAGE SUMMARY: This study evaluated the secular trend in the change in glomerular filtration rate (GFR) decline in the placebo arms of randomized controlled trials (RCTs) that were studying approaches to protect the kidneys in the setting of chronic kidney disease. The placebo groups of RCTs are useful for examining whether the rate of progression of kidney disease has changed over time. We found an improvement in the slope of change in GFR over time. These findings suggest that adherence to standards of kidney care as implemented in clinical trials may be associated with improved clinical outcomes, and these data may inform the design of future RCTs in nephrology.


Asunto(s)
Insuficiencia Renal Crónica , Nivel de Atención , Adulto , Humanos , Tasa de Filtración Glomerular , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Observacionales como Asunto
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000224

RESUMEN

Pericytes are a distinct type of cells interacting with endothelial cells in blood vessels and contributing to endothelial barrier integrity. Furthermore, pericytes show mesenchymal stem cell properties. Muscle-derived pericytes can demonstrate both angiogenic and myogenic capabilities. It is well known that regenerative abilities and muscle stem cell potential decline during aging, leading to sarcopenia. Therefore, this study aimed to investigate the potential of pericytes in supporting muscle differentiation and angiogenesis in elderly individuals and in patients affected by Ullrich congenital muscular dystrophy or by Bethlem myopathy, two inherited conditions caused by mutations in collagen VI genes and sharing similarities with the progressive skeletal muscle changes observed during aging. The study characterized pericytes from different age groups and from individuals with collagen VI deficiency by mass spectrometry-based proteomic and bioinformatic analyses. The findings revealed that aged pericytes display metabolic changes comparable to those seen in aging skeletal muscle, as well as a decline in their stem potential, reduced protein synthesis, and alterations in focal adhesion and contractility, pointing to a decrease in their ability to form blood vessels. Strikingly, pericytes from young patients with collagen VI deficiency showed similar characteristics to aged pericytes, but were found to still handle oxidative stress effectively together with an enhanced angiogenic capacity.


Asunto(s)
Colágeno Tipo VI , Pericitos , Proteoma , Humanos , Pericitos/metabolismo , Colágeno Tipo VI/metabolismo , Colágeno Tipo VI/genética , Proteoma/metabolismo , Células Cultivadas , Adulto , Persona de Mediana Edad , Anciano , Envejecimiento/metabolismo , Proteómica/métodos , Masculino , Femenino , Estrés Oxidativo , Diferenciación Celular
3.
Ecotoxicol Environ Saf ; 208: 111475, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33068975

RESUMEN

Cocaine is one of the most widely used illicit drugs in the world, and as a result of incomplete removal by sewage treatment plants it is found in surface waters, where it represents a new potential risk for aquatic organisms. In this study we evaluated the influence of environmental concentrations of cocaine on the liver and the kidney of the European eel (Anguilla anguilla). The eels were exposed to 20 ng L-1 of cocaine for fifty days, after which, three and ten days after the interruption of cocaine exposure their livers and kidneys were compared to controls. The general morphology of the two organs was evaluated, as well as the following parameters: cytochrome oxidase (COX) and caspase-3 activities, as markers of oxidative metabolism and apoptosis activation, respectively; glucose-regulated protein (GRP)78 levels, as a marker of endoplasmic reticulum (ER)-stress; blood glucose level, as stress marker; serum levels of alanine aminotransferase (ALT), as a marker of liver injury and serum levels of C-reactive protein (CRP), as a marker of the inflammatory process. The liver showed morphologic alterations such as necrotic areas, karyolysis and pyknotic nuclei, while the kidneys had dilated glomeruli and the renal tubules showed pyknotic nuclei and karyolysis. In the kidney, the alterations persisted after the interruption of cocaine exposure. In the liver, COX and caspase-3 activities increased (COX: P = 0.01; caspase-3: P = 0.032); ten days after the interruption of cocaine exposure, COX activity returned to control levels (P = 0.06) whereas caspase-3 activity decreased further (P = 0.012); GRP78 expression increased only in post-exposure recovery specimens (three days: P = 0.007 and ten days: P = 0.008 after the interruption of cocaine exposure, respectively). In the kidney, COX and caspase-3 activities increased (COX: P = 0.02; caspase-3: P = 0.019); after the interruption of cocaine exposure, COX activity remained high (three days: P = 0.02 and ten days: P = 0.029 after the interruption of cocaine exposure, respectively) whereas caspase-3 activity returned to control values (three days: P = 0.69 and ten days: P = 0.67 after the interruption of cocaine exposure, respectively). Blood glucose and serum ALT and CRP levels increased (blood glucose: P = 0.01; ALT: P = 0.001; CRP: 0.015) and remained high also ten days after the interruption of cocaine exposure (blood glucose: P = 0.009; ALT: P = 0.0031; CRP: 0.036). These results suggest that environmental cocaine concentrations adversely affected liver and kidney of this species.


Asunto(s)
Anguilla/fisiología , Cocaína/toxicidad , Contaminantes Químicos del Agua/toxicidad , Alanina Transaminasa/metabolismo , Anguilla/sangre , Animales , Glucemia , Proteína C-Reactiva/metabolismo , Caspasa 3/metabolismo , Cocaína/análisis , Complejo IV de Transporte de Electrones/metabolismo , Drogas Ilícitas , Riñón/metabolismo , Hígado/metabolismo
4.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575980

RESUMEN

Mitochondrial impairments in dynamic behavior (fusion/fission balance) associated with mitochondrial dysfunction play a key role in cell lipotoxicity and lipid-induced metabolic diseases. The present work aimed to evaluate dose- and time-dependent effects of the monounsaturated fatty acid oleate on mitochondrial fusion/fission proteins in comparison with the saturated fatty acid palmitate in hepatic cells. To this end, HepG-2 cells were treated with 0, 10 µM, 50 µM, 100 µM, 250 µM or 500 µM of either oleate or palmitate for 8 or 24 h. Cell viability and lipid accumulation were evaluated to assess lipotoxicity. Mitochondrial markers of fusion (mitofusin 2, MFN2) and fission (dynamin-related protein 1, DRP1) processes were evaluated by Western blot analysis. After 8 h, the highest dose of oleate induced a decrease in DRP1 content without changes in MFN2 content in association with cell viability maintenance, whereas palmitate induced a decrease in cell viability associated with a decrease mainly in MFN2 content. After 24 h, oleate induced MFN2 increase, whereas palmitate induced DRP1 increase associated with a higher decrease in cell viability with high doses compared to oleate. This finding could be useful to understand the role of mitochondria in the protective effects of oleate as a bioactive compound.


Asunto(s)
Dinaminas/genética , GTP Fosfohidrolasas/genética , Enfermedades Metabólicas/genética , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/genética , Ácido Oléico/metabolismo , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ácidos Grasos Monoinsaturados/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/toxicidad , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Dinámicas Mitocondriales/genética , Ácido Oléico/farmacología , Palmitatos/metabolismo , Palmitatos/farmacología
5.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884617

RESUMEN

Sodium overload is common in end-stage kidney disease (ESKD) and is associated with increased cardiovascular mortality that is traditionally considered a result of extracellular volume expansion. Recently, sodium storage was detected by Na23 magnetic resonance imaging in the interstitial tissue of the skin and other tissues. This amount of sodium is osmotically active, regulated by immune cells and the lymphatic system, escapes renal control, and, more importantly, is associated with salt-sensitive hypertension. In chronic kidney disease, the interstitial sodium storage increases as the glomerular filtration rate declines and is related to cardiovascular damage, regardless of the fluid overload. This sodium accumulation in the interstitial tissues becomes more significant in ESKD, especially in older and African American patients. The possible negative effects of interstitial sodium are still under study, though a higher sodium intake might induce abnormal structural and functional changes in the peritoneal wall. Interestingly, sodium stored in the interstial tissue is not unmodifiable, since it is removable by dialysis. Nevertheless, the sodium removal by peritoneal dialysis (PD) remains challenging, and new PD solutions are desirable. In this narrative review, we carried out an update on the pathophysiological mechanisms of volume-independent sodium toxicity and possible future strategies to improve sodium removal by PD.


Asunto(s)
Soluciones para Diálisis/efectos adversos , Fallo Renal Crónico/terapia , Diálisis Peritoneal/efectos adversos , Peritoneo/patología , Sodio/toxicidad , Animales , Humanos
6.
Int J Mol Sci ; 20(12)2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242698

RESUMEN

High-fat diets rich in fish oil (HFO diet, mainly ω3-PUFAs), in contrast to high-fat diets rich in lard (HL diet, mainly saturated fatty acids) have been shown to induce improvement in mitochondrial function and fusion processes associated with a reduction in reactive oxygen species production in both liver and skeletal muscle. High-fat diets may also impair testicular function, and mitochondria represent important cellular organelles with a pivotal role in reproductive function. Mitochondria are dynamic organelles that frequently undergo fission/fusion processes. A shift toward mitochondrial fusion process has been associated with improvement of mitochondrial function, as well as with ω3-PUFAs protective effects. The present study aimed to analyze the effect of chronic overfeeding (six weeks) with HFO or HL diet on testicular tissue histology, oxidative stress, antioxidant defenses, and mitochondrial fusion (mitofusin 2) and fission (dynamic related protein 1) protein. Our results showed that HFO diet induced less testicular histology impairment, oxidative stress, and apoptosis compared to a HL diet. This finding was associated with an increase in antioxidant activities and a shift toward mitochondrial fusion processes induced by HFO diet compared to HL diet, suggesting that ω3-PUFAs may act as bioactive compound targeting mitochondria dynamics to prevent testicular impairment.


Asunto(s)
Antioxidantes/farmacología , Dieta Alta en Grasa , Aceites de Pescado , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Testículo/metabolismo , Animales , Apoptosis/efectos de los fármacos , Peso Corporal , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Tamaño de los Órganos , Estrés Oxidativo/efectos de los fármacos , Ratas , Testículo/efectos de los fármacos
7.
Acta Neuropathol ; 136(3): 483-499, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29752552

RESUMEN

The synaptic cleft of the neuromuscular junction (NMJ) consists of a highly specialized extracellular matrix (ECM) involved in synapse maturation, in the juxtaposition of pre- to post-synaptic areas, and in ensuring proper synaptic transmission. Key components of synaptic ECM, such as collagen IV, perlecan and biglycan, are binding partners of one of the most abundant ECM protein of skeletal muscle, collagen VI (ColVI), previously never linked to NMJ. Here, we demonstrate that ColVI is itself a component of this specialized ECM and that it is required for the structural and functional integrity of NMJs. In vivo, ColVI deficiency causes fragmentation of acetylcholine receptor (AChR) clusters, with abnormal expression of NMJ-enriched proteins and re-expression of fetal AChRγ subunit, both in Col6a1 null mice and in patients affected by Ullrich congenital muscular dystrophy (UCMD), the most severe form of ColVI-related myopathies. Ex vivo muscle preparations from ColVI null mice revealed altered neuromuscular transmission, with electrophysiological defects and decreased safety factor (i.e., the excess current generated in response to a nerve impulse over that required to reach the action potential threshold). Moreover, in vitro studies in differentiated C2C12 myotubes showed the ability of ColVI to induce AChR clustering and synaptic gene expression. These findings reveal a novel role for ColVI at the NMJ and point to the involvement of NMJ defects in the etiopathology of ColVI-related myopathies.


Asunto(s)
Colágeno Tipo VI/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Esclerosis/metabolismo , Animales , Colágeno Tipo VI/genética , Matriz Extracelular/metabolismo , Humanos , Ratones , Ratones Noqueados , Distrofias Musculares/genética , Esclerosis/genética
9.
Nutrients ; 16(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39203754

RESUMEN

Brown adipose tissue (BAT) participates in thermogenesis and energy homeostasis. Studies on factors capable of influencing BAT function, such as a high-fat diet (HFD) or exposure to environmental pollutants, could be useful for finding metabolic targets for maintaining energy homeostasis. We evaluated the effect of chronic exposure to dichlorodiphenyldichloroethylene (DDE), the major metabolite of dichlorodiphenyltrichloroethane (DDT), and/or a HFD on BAT morphology, mitochondrial mass, dynamics, and oxidative stress in rats. To this end, male Wistar rats were treated for 4 weeks with a standard diet, or a HFD alone, or together with DDE. An increase in paucilocular adipocytes and the lipid droplet size were observed in HFD-treated rats, which was associated with a reduction in mitochondrial mass and in mitochondrial fragmentation, as well as with increased oxidative stress and upregulation of the superoxide dismutase-2. DDE administration mimics most of the effects induced by a HFD on BAT, and it aggravates the increase in the lipid droplet size when administered together with a HFD. Considering the known role of oxidative stress in altering BAT functionality, it could underlie the ability of both DDE and a HFD to induce similar metabolic adaptations in BAT, leading to reduced tissue thermogenesis, which can result in a predisposition to the onset of energy homeostasis disorders.


Asunto(s)
Tejido Adiposo Pardo , Diclorodifenil Dicloroetileno , Dieta Alta en Grasa , Contaminantes Ambientales , Estrés Oxidativo , Ratas Wistar , Animales , Masculino , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Dieta Alta en Grasa/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Ratas , Diclorodifenil Dicloroetileno/toxicidad , Superóxido Dismutasa/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Termogénesis/efectos de los fármacos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/efectos de los fármacos
10.
Mol Neurodegener ; 19(1): 22, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454456

RESUMEN

BACKGROUND: Mutations in the ß-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS: We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of ß-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a ß-glucocerebrosidase irreversible inhibitor was used to dissect the impact of ß-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of ß-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which ß-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for ß-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of ß-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS: Here we show that ß-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific ß-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS: Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.


Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Animales , Ratones , alfa-Sinucleína/metabolismo , Animales Modificados Genéticamente/metabolismo , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Lípidos , Mutación , Enfermedad de Parkinson/metabolismo
11.
ACS Appl Mater Interfaces ; 15(3): 3882-3893, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36629473

RESUMEN

The catalytic and antioxidant properties of platinum nanoparticles (PtNPs) make them promising candidates for several applications in nanomedicine. However, an open issue, still shared among most nanomaterials, is the understanding on how internalized PtNPs, which are confined within endo-lysosomal compartments, can exert their activities. To address this problem, here we study the protective effect of 5 nm PtNPs on a human hepatic (HepG2) cell line exposed to dichlorodiphenylethylene (DDE) as a model of oxidative stress. Our results indicate that PtNPs are very efficient to reduce DDE-induced damage in HepG2 cells, in an extent that depends on DDE dose. PtNPs can contrast the unbalance of mitochondrial dynamics induced by DDE and increase the expression of the SOD2 mitochondrial enzyme that recovers cells from oxidative stress. Interestingly, in cells treated with PtNPs─alone or in combination with DDE─mitochondria form contact sites with a rough endoplasmic reticulum and endo-lysosomes containing nanoparticles. These findings indicate that the protective capability of PtNPs, through their intrinsic antioxidant properties and modulating mitochondrial functionality, is mediated by an inter-organelle crosstalk. This study sheds new light about the protective action mechanisms of PtNPs and discloses a novel nano-biointeraction mechanism at the intracellular level, modulated by inter-organelle communication and signaling.


Asunto(s)
Antioxidantes , Nanopartículas del Metal , Humanos , Antioxidantes/farmacología , Platino (Metal)/farmacología , Transducción de Señal , Mitocondrias/metabolismo
12.
Dis Model Mech ; 15(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35946603

RESUMEN

Mutations of genes coding for collagen VI (COL6) cause muscle diseases, including Ullrich congenital muscular dystrophy and Bethlem myopathy. Although COL6 genetic variants were recently linked to brain pathologies, the impact of COL6 deficiency in brain function is still largely unknown. Here, a thorough behavioral characterization of COL6-null (Col6a1-/-) mice unexpectedly revealed that COL6 deficiency leads to a significant impairment in sensorimotor gating and memory/attention functions. In keeping with these behavioral abnormalities, Col6a1-/- mice displayed alterations in dopaminergic signaling, primarily in the prefrontal cortex. In vitro co-culture of SH-SY5Y neural cells with primary meningeal fibroblasts from wild-type and Col6a1-/- mice confirmed a direct link between COL6 ablation and defective dopaminergic activity, through a mechanism involving the inability of meningeal cells to sustain dopaminergic differentiation. Finally, patients affected by COL6-related myopathies were evaluated with an ad hoc neuropsychological protocol, revealing distinctive defects in attentional control abilities. Altogether, these findings point towards a previously undescribed role for COL6 in the proper maintenance of dopamine circuitry function and its related neurobehavioral features in both mice and humans. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Contractura , Enfermedades Musculares , Distrofias Musculares , Neuroblastoma , Animales , Colágeno Tipo VI/genética , Dopamina , Humanos , Ratones , Distrofias Musculares/patología , Mutación
13.
Toxics ; 9(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34822661

RESUMEN

Dichlorodiphenyldichloroethylene (DDE), the primary persistent metabolite of dichlorodiphenyltrichloroethane (DDT), has toxic effects on cells, but its dose-dependent impact on mitochondrial proteins involved in mitochondrial fusion and fission processes associated with cell viability impairment has not yet been analysed. Mitochondrial fusion and fission processes are critical to maintaining the mitochondrial network and allowing the cell to respond to external stressors such as environmental pollutants. Fusion processes are associated with optimizing mitochondrial function, whereas fission processes are associated with removing damaged mitochondria. We assessed the effects of different DDE doses, ranging between 0.5 and 100 µM, on cell viability and mitochondrial fusion/fission proteins in an in vitro hepatic cell model (human hepatocarcinomatous cells, HepG2); the DDE induced a decrease in cell viability in a dose-dependent manner, and its effect was enhanced in conditions of coincubation with dietary fatty acids. Fusion protein markers exhibited an inverted U-shape dose-response curve, showing the highest content in the 2.5-25 µM DDE dose range. The fission protein marker was found to increase significantly, leading to an increased fission/fusion ratio with high DDE doses. The low DDE doses elicited cell adaption by stimulating mitochondrial dynamics machinery, whereas high DDE doses induced cell viability loss associated with mitochondrial dynamics to shift toward fission. Present results are helpful to clarify the mechanisms underlying the cell fate towards survival or death in response to increasing doses of environmental pollutants.

14.
Environ Toxicol Pharmacol ; 87: 103684, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34052433

RESUMEN

1,1,1-trichloro-2,2-bis (p-chlorophenyl)-ethane (DDT) and its main metabolite 1,1-Dichloro-2,2-bis (p, p'-chlorophenyl) ethylene (DDE) act as endocrine disruptors in humans and wildlife. Immunomodulatory functions have also been attributed to both xenobiotics. DDT was banned in the 1970s due to its toxicity, but it is still produced and used for indoor residual spraying with disease vector control purposes. Due to their persistence and lipophilic properties, DDT and DDE can bioaccumulate through the food chain, being stored in organisms' adipose depots. Their endocrine disruptor function is mediated by agonist or antagonist interaction with nuclear receptors. Present review aimed to provide an overview of how DDT and DDE exposure impacts reproductive and immune systems with estrogen-disrupting action in humans and wildlife. Studies showing DDT and DDE impact on mitochondrial function and apoptosis pathway will also be reviewed, suggesting the hypothesis of direct action on mitochondrial steroid receptors.


Asunto(s)
DDT/toxicidad , Diclorodifenil Dicloroetileno/toxicidad , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Insecticidas/toxicidad , Mitocondrias/efectos de los fármacos , Animales , Animales Salvajes , Humanos , Mitocondrias/metabolismo , Receptores de Esteroides/metabolismo
15.
Sci Rep ; 11(1): 23500, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873228

RESUMEN

A clear evidence on the benefits of somatostatin analogues (SA) on liver outcome in patients affected by polycystic liver disease is still lacking. We performed a meta-analysis of RCTs and a trial sequential analysis (TSA) evaluating the effects of SA in adult patients with polycystic liver disease on change in liver volume. As secondary outcome, we evaluated the effects on quality of life as measured by SF36-questionnaire. Six RCTs were selected with an overall sample size of 332 adult patients with polycystic liver disease (mean age: 46 years). Mean liver volume at baseline was 3289 ml in SA group and 3089 ml in placebo group. Overall, unstandardized mean difference in liver volume was - 176 ml (95%CI, - 406, 54; p < 0.133). Heterogeneity was low (I2:0%, p < 0.992). However, we performed a moderator analysis and we found that a higher eGFR significantly correlates to a more pronounced effect of SA on liver volume reduction (p = 0.036). Cumulative Z-curve in TSA did not reach either significance and futility boundaries or required information size. Three RCTs have evaluated Quality of life parameters measured by SF36-QOL questionnaire for a total of 124 patients; no significant difference was found on the effect of SA on QOL parameters when compared with placebo. The present meta-analysis revealed a potential effect of SA on reduction of liver volume and quality of life parameters, but results did not reach a statistical significance. These data could be explained by the need of further studies, as demonstrated through TSA, to reach an adequate sample size to confirm the beneficial outcomes of SAs treatment.


Asunto(s)
Quistes/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Hígado/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Somatostatina/análogos & derivados , Somatostatina/uso terapéutico , Humanos , Persona de Mediana Edad , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
16.
Cells ; 8(8)2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31387296

RESUMEN

In our modern society, exposure to stressful environmental stimuli, such as pollutants and/or chronic high-fat feeding, continuously induce tissular/organ metabolic adaptation to promote cellular survival. In extreme conditions, cellular death and tissular/organ damage occur. Mitochondria, as a cellular energy source, seem to play an important role in facing cellular stress induced by these environmental stimuli. On the other hand, mitochondrial dysfunction and oxidative stress play a key role in environmental stress-induced metabolic diseases. However, little is known about the combined effect of simultaneous exposure to chronic high-fat feeding and environmental pollutants on metabolic alterations at a tissular and cellular level, including mitochondrial dysfunction and oxidative stress induction. Our research group recently addressed this topic by analysing the effect of chronic exposure to a non-toxic dose of the environmental pollutant dichlorodiphenyldichloroethylene (DDE) associated with high-fat feeding in male Wistar rats. In this review, we mainly summarize our recent findings on mitochondrial adaptive response and oxidative stress induction in the liver, the main tissue involved in fat metabolism and pollutant detoxification, and in male gonads, the main targets of endocrine disruption induced by both high-fat feeding and environmental pollutants.


Asunto(s)
Adaptación Fisiológica , Dieta Alta en Grasa/efectos adversos , Insecticidas/toxicidad , Hígado/metabolismo , Mitocondrias/metabolismo , Testículo/metabolismo , Animales , Hígado/efectos de los fármacos , Masculino , Mitocondrias/efectos de los fármacos , Estrés Oxidativo , Ratas , Testículo/efectos de los fármacos
17.
Neuromuscul Disord ; 29(9): 657-663, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31471117

RESUMEN

Bethlem myopathy represents the milder form of the spectrum of Collagen VI-related dystrophies, which are characterized by a clinical continuum between the two extremities, the Bethlem myopathy and the Ullrich congenital muscular dystrophy, and include less defined intermediate phenotypes. Bethlem myopathy is mainly an autosomal dominant disorder and the causing mutations occur in the COL6A genes encoding for the α1 (COL6A1), α2 (COL6A2) and α3 (COL6A3) chains. However, few cases of recessive inheritance have been also reported. We here describe clinical, genetic and functional findings in a recessive Bethlem myopathy family harbouring two novel pathogenic mutations in the COL6A2 gene. Two adult siblings presented with muscle weakness and wasting, elbows and Achilles tendon retractions, lumbar hyperlordosis, waddling gait and positive Gowers' sign. Muscle biopsy showed a dystrophic pattern. Molecular analysis of the COL6A2 gene revealed the novel paternally-inherited nonsense p.Gln889* mutation and the maternally-inherited p.Pro260_Lys261insProPro small insertion. Fibroblast studies in both affected patients showed the concomitant reduction in the amount of normal Collagen VI (p.Gln889*) and impairment of Collagen VI secretion and assembly (p.Pro260_Lys261insProPro). Each of the two variants behave as a recessive mutation as shown by the asymptomatic heterozygous parents, while their concomitant effects determined a relatively mild Bethlem myopathy phenotype. This study confirms the occurrence of recessive inherited Bethlem myopathy and expands the genetic heterogeneity of this group of muscle diseases.


Asunto(s)
Colágeno Tipo VI/metabolismo , Contractura/genética , Patrón de Herencia , Distrofias Musculares/congénito , Adulto , Codón sin Sentido , Colágeno Tipo VI/genética , Contractura/metabolismo , Contractura/patología , Contractura/fisiopatología , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Mutagénesis Insercional , Cultivo Primario de Células , Multimerización de Proteína/genética , Hermanos , Adulto Joven
18.
Dis Model Mech ; 11(6)2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29728408

RESUMEN

Collagen VI is a major extracellular matrix protein exerting a number of functions in different tissues, spanning from biomechanical to regulatory signals in the cell survival processes, and playing key roles in maintaining the stemness or determining the differentiation of several types of cells. In the last couple of years, emerging findings on collagen VI have led to increased interest in its role in the nervous system. The role of this protein in the peripheral nervous system was intensely studied and characterized in detail. Collagen VI acts as a regulator of Schwann cell differentiation and is required for preserving peripheral nerve myelination, function and structure, as well as for orchestrating nerve regeneration after injury. Although the role and distribution of collagen VI in the peripheral nervous system is now well established, the role of this distinctive extracellular matrix component in the central nervous system, along with its links to human neurological and neurodegenerative disorders, remains an open field of investigation. In this Review, we summarize and discuss a number of recent findings related to collagen VI in the central and peripheral nervous systems. We further link these findings to different aspects of the protein that are relevant to human diseases in these compartments in order to provide a comprehensive overview of the roles of this key matrix component in the nervous system.


Asunto(s)
Colágeno Tipo VI/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Animales , Neoplasias del Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Humanos , Modelos Biológicos , Enfermedades del Sistema Nervioso/patología
19.
Front Physiol ; 9: 1891, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687113

RESUMEN

Brown adipose tissue (BAT) with its thermogenic function due to the presence of the mitochondrial uncoupling protein 1 (UCP1), has been positively associated with improved resistance to obesity and metabolic diseases. During recent years, the potential influence of environmental pollutants on energetic homoeostasis and obesity development has drawn increased attention. The purpose of this review is to discuss how regulation of BAT function could be involved in the environmental pollutant effect on body energy metabolism. We mainly focused in reviewing studies on animal models, which provide a better insight into the cellular mechanisms involved in this effect on body energy metabolism. The current literature supports the hypothesis that some environmental pollutants, acting as endocrine disruptors (EDCs), such as dichlorodiphenyltrichoroethane (DDT) and its metabolite dichlorodiphenylethylene (DDE) as well as some, traffic pollutants, are associated with increased obesity risk, whereas some other chemicals, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), had a reverse association with obesity. Noteworthy, the EDCs associated with obesity and metabolic disorders impaired BAT mass and function. Perinatal exposure to DDT impaired BAT thermogenesis and substrate utilization, increasing susceptibility to metabolic syndrome. Ambient particulate air pollutions induced insulin resistance associated with BAT mitochondrial dysfunction. On the other hand, the environmental pollutants (PFOS/PFOA) elicited a reduction in body weight and adipose mass associated with upregulation of UCP1 and increased oxidative capacity in brown-fat mitochondria. Further research is needed to better understand the physiological role of BAT in response to exposure to both obesogenic and anti-obesogenic pollutants and to confirm the same role in humans.

20.
Front Physiol ; 9: 357, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29681865

RESUMEN

The main dietary flavonoid quercetin, is known to preserve the integrity of gastrointestinal barrier and to have anti-inflammatory, anti-cancer, anti-fibrotic, and other beneficial properties. Many of the biological effects of quercetin appear to be associated to the modulation of cell signaling pathways, rather than to its antioxidant activity. In spite of the large number of data available on the molecular and cellular mechanisms by which quercetin exerts its biological effects, including protection of intestinal barrier function, there is a lack of data about the role of this substance on the expression and/or the secretion of mucins released by intestinal goblet cells. Here we investigated the effects of quercetin on the secretion and the gene expression of the main intestinal gel-forming mucins, MUC2 and MUC5AC, and the signaling mechanisms underlined, in human intestinal goblet cell-like LS174T. We found that quercetin increases intracellular Ca2+ levels and induces MUC2 and MUC5AC secretion in a Ca2+-dependent manner. Quercetin also induces mRNA levels of both secretory mucins. Quercetin stimulation of LS174T cells increases phosphorylation levels of extracellular signal regulated kinase (ERK)1-2 and protein kinase C (PKC) α and the induction of MUC2 and MUC5AC secretion and mRNA relies on phospholipase C (PLC), PKC, and ERK1-2 signaling pathways since the PLC inhibitor U73122, the PKC inhibitor bisindolylmaleimide (BIM) and the ERK1-2 pathway inhibitor PD98059, all revert the stimulatory effects of quercetin. We also demonstrated that the induction of mucin gene expression by quercetin is not limited to goblet cells. Indeed, quercetin induces mRNA levels of MUC2 and MUC5AC via PKCα/ERK1-2 pathway also in the human intestinal epithelial Caco-2 cells. These data highlight a novel mechanism thereby quercetin, regulating the secretory function of intestinal goblet cells and mucin levels in enterocytes may exert its protective effects on intestinal mucosal barrier.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA