Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645202

RESUMEN

Pediatric low-grade gliomas (pLGG) comprise 35% of all brain tumors. Despite favorable survival, patients experience significant morbidity from disease and treatments. A deeper understanding of pLGG biology is essential to identify novel, more effective, and less toxic therapies. We utilized single cell RNA sequencing (scRNA-seq), spatial transcriptomics, and cytokine analyses to characterize and understand tumor and immune cell heterogeneity across pLGG. scRNA-seq revealed tumor and immune cells within the tumor microenvironment (TME). Tumor cell subsets revealed a developmental hierarchy with progenitor and mature cell populations. Immune cells included myeloid and lymphocytic cells. There was a significant difference between the prevalence of two major myeloid subclusters between pilocytic astrocytoma (PA) and ganglioglioma (GG). Bulk and single-cell cytokine analyses evaluated the immune cell signaling cascade with distinct immune phenotypes among tumor samples. KIAA1549-BRAF tumors appeared more immunogenic, secreting higher levels of immune cell activators and chemokines, compared to BRAF V600E tumors. Spatial transcriptomics revealed the differential gene expression of these chemokines and their location within the TME. A multi-pronged analysis of pLGG demonstrated the complexity of the pLGG TME and differences between genetic drivers that may influence their response to immunotherapy. Further investigation of immune cell infiltration and tumor-immune interactions is warranted. Key points: There is a developmental hierarchy in neoplastic population comprising of both progenitor-like and mature cell types in both PA and GG.A more immunogenic, immune activating myeloid population is present in PA compared to GG. Functional analysis and spatial transcriptomics show higher levels of immune mobilizing chemokines in KIAA1549-BRAF fusion PA tumor samples compared to BRAF V600E GG samples. Importance of the Study: While scRNA seq provides information on cellular heterogeneity within the tumor microenvironment (TME), it does not provide a complete picture of how these cells are interacting or where they are located. To expand on this, we used a three-pronged approach to better understand the biology of pediatric low-grade glioma (pLGG). By analyzing scRNA-seq, secreted cytokines and spatial orientation of cells within the TME, we strove to gain a more complete picture of the complex interplay between tumor and immune cells within pLGG. Our data revealed a complex heterogeneity in tumor and immune populations and identified an interesting difference in the immune phenotype among different subtypes.

2.
Clin Cancer Res ; 30(8): 1544-1554, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38334950

RESUMEN

PURPOSE: There are no effective treatment strategies for children with highest-risk posterior fossa group A ependymoma (PFA). Chromosome 1q gains (1q+) are present in approximately 25% of newly diagnosed PFA tumors, and this number doubles at recurrence. Seventy percent of children with chromosome 1q+ PFA will die because of the tumor, highlighting the urgent need to develop new therapeutic strategies for this population. EXPERIMENTAL DESIGN: In this study, we utilize 1q+ PFA in vitro and in vivo models to test the efficacy of combination radiation and chemotherapy in a preclinical setting. RESULTS: 5-fluorouracil (5FU) enhances radiotherapy in 1q+ PFA cell lines. Specifically, 5FU increases p53 activity mediated by the extra copy of UCK2 located on chromosome 1q in 1q+ PFA. Experimental downregulation of UCK2 resulted in decreased 5FU sensitivity in 1q+ PFA cells. In in vitro studies, a combination of 5FU, retinoid tretinoin (ATRA), and radiation provided the greatest reduction in cellular proliferation and greatest increase in markers of apoptosis in 1q+ PFA cell lines compared with other treatment arms. Similarly, in vivo experiments demonstrated significant enhancement of survival in mice treated with combination radiation and 5FU and ATRA. CONCLUSIONS: These results are the first to identify a chromosome 1q+ specific therapy approach in 1q+ PFA. Existing phase I studies have already established single-agent pediatric safety and dosages of 5FU and ATRA, allowing for expedited clinical application as phase II trials for children with high-risk PFA.


Asunto(s)
Ependimoma , Neoplasias Infratentoriales , Niño , Humanos , Animales , Ratones , Neoplasias Infratentoriales/genética , Neoplasias Infratentoriales/patología , Neoplasias Infratentoriales/terapia , Resultado del Tratamiento , Ependimoma/genética , Ependimoma/terapia , Fluorouracilo , Cromosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA