Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 354: 215-224, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29678449

RESUMEN

Micromass culture systems have been developed as three-dimensional organotypic in vitro alternatives to test developmental toxicity. We have optimized a murine-based embryonic midbrain micromass system in two genetic strains to evaluate neurodevelopmental effects of gold-cored silver nanoparticles (AgNPs) of differing sizes and coatings-20 nm AgCitrate, 110 nm AgCitrate, and 110 nm AgPVP. AgNPs are increasingly used in consumer, commercial, and medical products for their antimicrobial properties and observations of Ag in adult and fetal brain following in vivo exposures to AgNPs have led to concerns about the potential for AgNPs to elicit adverse effects on neurodevelopment and neurological function. Cytotoxicity was assessed at three time points of development by both nominal dose and by dosimetric dose. Ag dosimetry was assessed in cultures and the gold core component of the AgNPs was used as a tracer for determination of uptake of intact AgNPs and silver dissolution from particles in the culture system. Results by both nominal and dosimetric dose show cell death increased significantly in a dose-dependent manner at later time points (days 15 and 22 in vitro) that coincide with differentiation stages of development in both strains. When assessed by dosimetric dose, cultures were more sensitive to smaller particles, despite less uptake of Ag in smaller particles in both strains.


Asunto(s)
Citratos/toxicidad , Mesencéfalo/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Síndromes de Neurotoxicidad/etiología , Povidona/toxicidad , Plata/toxicidad , Pruebas de Toxicidad , Animales , Muerte Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Interacción Gen-Ambiente , Edad Gestacional , Mesencéfalo/embriología , Ratones Endogámicos C57BL , Síndromes de Neurotoxicidad/embriología , Síndromes de Neurotoxicidad/genética , Tamaño de la Partícula , Povidona/análogos & derivados , Medición de Riesgo , Especificidad de la Especie , Factores de Tiempo , Técnicas de Cultivo de Tejidos
2.
Biomarkers ; 23(2): 174-187, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29047308

RESUMEN

CONTEXT: Organophosphorus insecticides (OPs) have been used to control agricultural pests found in Washington state. Farmworkers (FW) have higher exposure to OP pesticides than non-farmworkers (NFW), and FW children may in turn have higher exposure than NFW children. OBJECTIVE: To examine the association between the concentration in house dust of five OPs used commonly in pome fruit orchards and the concentration in urine of dialkylphosphate metabolites (DAP), in a cohort of Hispanic FW and NFW and their children. METHODS: Parents and children participated in three data collection periods over the course of one year. Urine samples were evaluated for the DAPs characteristic of OP exposure, and dust from homes and vehicles was evaluated for intact OP residues. RESULTS: Geometric mean (GM) concentrations of OPs in house and vehicle dust were higher in FW households than NFW households in all agricultural seasons. GM concentration of urinary DAPs was higher for children in FW households than NFW households. DISCUSSION: Regression analysis found a positive association between OP residues in house dust and the children's urinary DAPs. CONCLUSIONS: To our knowledge, this study is the first to report an association between pesticides in house dust and their biological metabolites in urine.


Asunto(s)
Agricultura/métodos , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Agricultores , Compuestos Organofosforados/orina , Plaguicidas/orina , Adulto , Niño , Estudios de Cohortes , Productos Agrícolas/crecimiento & desarrollo , Humanos , Exposición Profesional/análisis , Estaciones del Año , Washingtón
3.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27836847

RESUMEN

In a longitudinal agricultural community cohort sampling of 65 adult farmworkers and 52 adult nonfarmworkers, we investigated agricultural pesticide exposure-associated changes in the oral buccal microbiota. We found a seasonally persistent association between the detected blood concentration of the insecticide azinphos-methyl and the taxonomic composition of the buccal swab oral microbiome. Blood and buccal samples were collected concurrently from individual subjects in two seasons, spring/summer 2005 and winter 2006. Mass spectrometry quantified blood concentrations of the organophosphate insecticide azinphos-methyl. Buccal oral microbiome samples were 16S rRNA gene DNA sequenced, assigned to the bacterial taxonomy, and analyzed after "centered-log-ratio" transformation to handle the compositional nature of the proportional abundances of bacteria per sample. Nonparametric analysis of the transformed microbiome data for individuals with and without azinphos-methyl blood detection showed significant perturbations in seven common bacterial taxa (>0.5% of sample mean read depth), including significant reductions in members of the common oral bacterial genus Streptococcus Diversity in centered-log-ratio composition between individuals' microbiomes was also investigated using principal-component analysis (PCA) to reveal two primary PCA clusters of microbiome types. The spring/summer "exposed" microbiome cluster with significantly less bacterial diversity was enriched for farmworkers and contained 27 of the 30 individuals who also had azinphos-methyl agricultural pesticide exposure detected in the blood. IMPORTANCE: In this study, we show in human subjects that organophosphate pesticide exposure is associated with large-scale significant alterations of the oral buccal microbiota composition, with extinctions of whole taxa suggested in some individuals. The persistence of this association from the spring/summer to the winter also suggests that long-lasting effects on the commensal microbiota have occurred. The important health-related outcomes of these agricultural community individuals' pesticide-associated microbiome perturbations are not understood at this time. Future investigations should index medical and dental records for common and chronic diseases that may be interactively caused by this association between pesticide exposure and microbiome alteration.


Asunto(s)
Azinfosmetilo/efectos adversos , Bacterias/aislamiento & purificación , Agricultores , Microbiota , Boca/microbiología , Exposición Profesional , Plaguicidas/efectos adversos , Adulto , Bacterias/clasificación , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Washingtón , Adulto Joven
4.
Toxicol Appl Pharmacol ; 312: 19-25, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26826490

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional regulators that silence messenger RNAs. Because miRNAs are stable at room temperature and long-lived, they have been proposed as molecular biomarkers to monitor disease and exposure status. While urinary miRNAs have been used clinically as potential diagnostic markers for kidney and bladder cancers and other diseases, their utility in non-clinical settings has yet to be fully developed. Our goal was to investigate the potential for urinary miRNAs to act as biomarkers of pesticide exposure and early biological response by identifying the miRNAs present in urine from 27 parent/child, farmworker/non-farmworker pairs (16FW/11NFW) collected during two agricultural seasons (thinning and post-harvest) and characterizing the between- and within-individual variability of these miRNA epigenetic regulators. MiRNAs were isolated from archived urine samples and identified using PCR arrays. Comparisons were made between age, households, season, and occupation. Of 384 miRNAs investigated, 297 (77%) were detectable in at least one sample. Seven miRNAs were detected in at least 50% of the samples, and one miRNA was present in 96% of the samples. Principal components and hierarchical clustering analyses indicate significant differences in miRNA profiles between farmworker and non-farmworker adults as well as between seasons. Six miRNAs were observed to be positively associated with farmworkers status during the post-harvest season. Expression of five of these miRNA trended towards a positive dose response relationship with organophosphate pesticide metabolites in farmworkers. These results suggest that miRNAs may be novel biomarkers of pesticide exposure and early biological response.


Asunto(s)
Biomarcadores/orina , MicroARNs/orina , Plaguicidas/toxicidad , Análisis por Conglomerados , Exposición a Riesgos Ambientales , Humanos , Límite de Detección
5.
Toxicol Appl Pharmacol ; 289(2): 240-50, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26476918

RESUMEN

Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains) were exposed to CdSe-ZnS core-shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci.


Asunto(s)
Compuestos de Cadmio/toxicidad , Pulmón/efectos de los fármacos , Neumonía/inducido químicamente , Puntos Cuánticos/toxicidad , Compuestos de Selenio/toxicidad , Sulfuros/toxicidad , Compuestos de Zinc/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Análisis por Conglomerados , Citocinas/metabolismo , Predisposición Genética a la Enfermedad , Glutatión/metabolismo , Herencia , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Fenotipo , Neumonía/genética , Neumonía/inmunología , Neumonía/metabolismo , Factores de Riesgo , Especificidad de la Especie , Factores de Tiempo
6.
Biomarkers ; 20(5): 299-305, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26329526

RESUMEN

CONTEXT: Characterization of stress exposure requires understanding seasonal variability in stress biomarkers. OBJECTIVE: To compare acute and chronic stress biomarkers between two seasons in a cohort of rural, Hispanic mothers. METHODS: Stress questionnaires and cortisol measurements (hair, blood and saliva) were collected in the summer and fall. RESULTS: Cortisol biomarkers were significantly different and stress questionnaires were significantly correlated between seasons. DISCUSSION: The variability in cortisol and relative stability of questionnaires between seasons may indicate that cortisol responds to subtle stressors not addressed in questionnaires. CONCLUSIONS: There are significant differences in stress biomarkers in our cohort between seasons.


Asunto(s)
Agricultura , Biomarcadores/análisis , Hispánicos o Latinos , Hidrocortisona/análisis , Madres , Estaciones del Año , Biomarcadores/sangre , Estudios de Cohortes , Exposición a Riesgos Ambientales , Femenino , Cabello/química , Humanos , Hidrocortisona/sangre , Saliva/química , Estrés Fisiológico
7.
Reprod Toxicol ; 118: 108362, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37011698

RESUMEN

To better define appropriate applications of our 3-dimensional testicular co-culture as a model for reproductive toxicology, we evaluated the ability of the model to capture structural and functional elements that can be targeted by reproductive toxicants. Testicular co-cultures were prepared from postnatal day 5 male rats and cultured with a Matrigel overlay. Following a 2-day acclimation period, we characterized functional pathway dynamics by evaluating morphology, protein expression, testosterone concentrations, and global gene expression at a range of timepoints from experimental days 0-21. Western blotting confirmed expression of Sertoli cell, Leydig cell, and spermatogonial cell-specific protein markers. Testosterone detected in cell culture media indicates active testosterone production. Quantitative pathway analysis identified Gene Ontology biological processes enriched among genes significantly changing over the course of 21 days. Processes enriched among genes significantly increasing through time include general developmental processes (morphogenesis, tissue remodeling, etc.), steroid regulation, Sertoli cell development, immune response, and stress and apoptosis. Processes enriched among genes significantly decreasing over time include several related to male reproductive development (seminiferous tubule development, male gonad development, Leydig cell differentiation, Sertoli cell differentiation), all of which appear to peak in expression between days 1 and 5 before decreasing at later timepoints. This analysis provides a temporal roadmap for specific biological process of interest for reproductive toxicology in the model and anchors the model to sensitive phases of in vivo development, helping to define the relevance of the model for in vivo processes.


Asunto(s)
Células de Sertoli , Testículo , Masculino , Ratas , Animales , Testículo/metabolismo , Células de Sertoli/metabolismo , Células Intersticiales del Testículo/metabolismo , Espermatogonias/metabolismo , Testosterona/metabolismo
8.
Int J Hyg Environ Health ; 248: 114090, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36516690

RESUMEN

Our prior work shows that azinphos-methyl pesticide exposure is associated with altered oral microbiomes in exposed farmworkers. Here we extend this analysis to show the same association pattern is also evident in their children. Oral buccal swab samples were analyzed at two time points, the apple thinning season in spring-summer 2005 for 78 children and 101 adults and the non-spray season in winter 2006 for 62 children and 82 adults. The pesticide exposure for the children were defined by the farmworker occupation of the cohabitating household adult and the blood azinphos-methyl detection of the cohabitating adult. Oral buccal swab 16S rRNA sequencing determined taxonomic microbiota proportional composition from concurrent samples from both adults and children. Analysis of the identified bacteria showed significant proportional changes for 12 of 23 common oral microbiome genera in association with azinphos-methyl detection and farmworker occupation. The most common significantly altered genera had reductions in the abundance of Streptococcus, suggesting an anti-microbial effect of the pesticide. Principal component analysis of the microbiome identified two primary clusters, with association of principal component 1 to azinphos-methyl blood detection and farmworker occupational status of the household. The children's buccal microbiota composition clustered with their household adult in ∼95% of the households. Household adult farmworker occupation and household pesticide exposure is associated with significant alterations in their children's oral microbiome composition. This suggests that parental occupational exposure and pesticide take-home exposure pathways elicit alteration of their children's microbiomes.


Asunto(s)
Microbiota , Exposición Profesional , Plaguicidas , Adulto , Humanos , Niño , Plaguicidas/análisis , Agricultores , Azinfosmetilo/análisis , ARN Ribosómico 16S , Agricultura , Exposición Profesional/análisis
9.
J Environ Monit ; 14(8): 2038-43, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22767010

RESUMEN

Molecular techniques are an alternative to culturing and counting methods in quantifying indoor fungal contamination. Pyrosequencing offers the possibility of identifying unexpected indoor fungi. In this study, 50 house dust samples were collected from homes in the Yakima Valley, WA. Each sample was analyzed by quantitative PCR (QPCR) for 36 common fungi and by fungal tag-encoded flexible (FLX) amplicon pyrosequencing (fTEFAP) for these and additional fungi. Only 24 of the samples yielded amplified results using fTEFAP but QPCR successfully amplified all 50 samples. Over 450 fungal species were detected by fTEFAP but most were rare. Twenty-two fungi were found by fTEFAP to occur with at least an average of ≥0.5% relative occurrence. Many of these fungi seem to be associated with plants, soil or human skin. Combining fTEFAP and QPCR can enhance studies of fungal contamination in homes.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior/análisis , Polvo/análisis , Hongos/clasificación , Hongos/genética , Vivienda , Humanos , Reacción en Cadena de la Polimerasa , Washingtón
10.
J Occup Environ Hyg ; 7(12): 663-71, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20945243

RESUMEN

Organophosphate pesticides are commonly used in the United States, and farmworkers are at risk for chronic exposure. Using data from a community randomized trial to interrupt the take-home pathway of pesticide exposure, we examined the association between floor surface type (smooth floor, thin carpet, and thick carpet) and rooms in which dust samples were collected (living room vs. non-living room) and concentrations of azinphos-methyl residues in home environments. We also examined the association between vehicle type (truck, auto, or other) and footwell floor surfaces (carpeted, smooth surface, or no mat) and concentrations of azinphos-methyl in vehicle dust samples. Dust samples were collected from 203 and 179 households and vehicles, respectively. All households had at least one child aged 2-6. Vehicle dust samples were collected from footwells of the vehicle used for commuting to and from work. A total of 183 samples were collected from living rooms, and 20 were collected from other rooms in the home. Forty-two samples were collected from thick carpets, 130 from thin carpets, and 27 from smooth floor surfaces. Thick and thin carpets had a significantly greater dust mass than smooth floor surfaces (6.0 g/m(2) for thick carpets, 7.8 g/m(2) for thin carpets, and 1.5 g/m(2) for smooth surfaces). Of the 179 vehicle samples, 113 were from cars, 34 from trucks, and 32 from other vehicles. Vehicles with no mats had a significantly higher mass of dust (21.3 g) than those with hard mats (9.3 g) but did not differ from vehicles with plush mats (12.0 g). Further research is needed to characterize the environment in which children may be exposed to pesticides.


Asunto(s)
Agricultura , Azinfosmetilo/análisis , Polvo/análisis , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Pisos y Cubiertas de Piso , Insecticidas/análisis , Residuos de Plaguicidas/análisis , Contaminación del Aire Interior/análisis , Niño , Preescolar , Salud de la Familia , Vivienda , Humanos , Vehículos a Motor
11.
Artículo en Inglés | MEDLINE | ID: mdl-32106530

RESUMEN

The exposome provides a conceptual model for identifying and characterizing lifetime environmental exposures and resultant health effects. In this study, we applied key exposome concepts to look specifically at the neurodevelopmental pesticide exposome, which focuses on exposures to pesticides that have the potential to cause an adverse neurodevelopmental impact. Using household dust samples from a children's agricultural cohort located in the Yakima Valley of Washington state, we identified 87 individual pesticides using liquid chromatography-tandem mass spectrometry. A total of 47 of these have evidence of neurotoxicity included in the Environmental Protection Agency (EPA) (re)registration materials. We used a mixed effects model to model trends in pesticide exposure. Over the two study years (2005 and 2011), we demonstrate a significant decrease in the neurodevelopmental pesticide exposome across the cohort, but particularly among farmworker households. Additional analysis with a non-parametric binomial analysis that weighted the levels of potentially neurotoxic pesticides detected in household dust by their reference doses revealed that the decrease in potentially neurotoxic pesticides was largely a result of decreases in some of the most potent neurotoxicants. Overall, this study provides evidence that the neurodevelopmental pesticide exposome framework is a useful tool in assessing the effectiveness of specific interventions in reducing exposure as well as setting priorities for future targeted actions.


Asunto(s)
Exposoma , Plaguicidas/efectos adversos , Agricultura , Niño , Polvo , Granjas , Humanos , Neurotoxinas/efectos adversos , Washingtón
12.
Nanotoxicology ; 14(7): 908-928, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32574512

RESUMEN

Silver nanoparticles (AgNP) are used in multiple applications but primarily in the manufacturing of antimicrobial products. Previous studies have identified AgNP toxicity in airway epithelial cells, but no in vitro studies to date have used organotypic cultures as a high-content in vitro model of the conducting airway to characterize the effects of interactions between host genetic and acquired factors, or gene × phenotype interactions (G × P), on AgNP toxicity. In the present study, we derived organotypic cultures from primary murine tracheal epithelial cells (MTEC) to characterize nominal and dosimetric dose-response relationships for AgNPs with a gold core on barrier dysfunction, glutathione (GSH) depletion, reactive oxygen species (ROS) production, lipid peroxidation, and cytotoxicity across two genotypes (A/J and C57BL/6J mice), two phenotypes ('Normal' and 'Type 2 [T2]-Skewed'), and two exposures (an acute exposure of 24 h and a subacute exposure of 4 h, every other day, over 5 days [5 × 4 h]). We characterized the 'T2-Skewed' phenotype as an in vitro model of chronic respiratory diseases, which was marked by increased sensitivity to AgNP-induced barrier dysfunction, GSH depletion, ROS production, lipid peroxidation, and cytotoxicity, suggesting that asthmatics are a sensitive population to AgNP exposures in occupational settings. This also suggests that exposure limits, which should be based upon the most sensitive population, should be derived using in vitro and in vivo models of chronic respiratory diseases. This study highlights the importance of considering dosimetry as well as G × P effects when screening and prioritizing potential respiratory toxicants. Such in vitro studies can be used to inform regulatory policy aimed at special protections for all populations.


Asunto(s)
Antibacterianos/toxicidad , Células Epiteliales/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Tráquea/efectos de los fármacos , Animales , Antibacterianos/química , Técnicas de Cultivo de Célula , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Células Epiteliales/patología , Genotipo , Glutatión/metabolismo , Oro/química , Oro/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Nanopartículas del Metal/química , Ratones , Ratones Endogámicos C57BL , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Plata/química , Propiedades de Superficie , Tráquea/metabolismo , Tráquea/patología
13.
Reprod Toxicol ; 91: 116-130, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31740287

RESUMEN

We characterize temporal pathway dynamics of differentiation in an in vitro neurotoxicity model with the aim of informing design and interpretation of toxicological assays. Human neural progenitor cells (hNPCs) were cultured in differentiation conditions up to 21 days. Genes significantly changed through time were identified and grouped according to temporal dynamics. Quantitative pathway analysis identified gene ontology (GO) terms enriched among significantly changed genes and provided a temporal roadmap of pathway trends in vitro. Gene expression in hNPCs was compared with publicly available gene expression data from developing human brain tissue in vivo. Quantitative pathway analysis of significantly changed genes and targeted analysis of specific pathways of interest identified concordance between in vivo and in vitro expression associated with proliferation, migration, differentiation, synapse formation, and neurotransmission. Our analysis anchors gene expression patterns in vitro to sensitive windows of in vivo development, helping to define appropriate applications of the model.


Asunto(s)
Modelos Biológicos , Células-Madre Neurales/metabolismo , Neurogénesis , Encéfalo/crecimiento & desarrollo , Supervivencia Celular , Células Cultivadas , Femenino , Humanos , Síndromes de Neurotoxicidad , Transcriptoma
14.
J Expo Sci Environ Epidemiol ; 29(3): 358-365, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29662130

RESUMEN

The take-home pathway is a significant source of organophosphate pesticide exposure for young children (3-5 years old) living with an adult farmworker. This avoidable exposure pathway is an important target for intervention. We selected 24 agricultural communities in the Yakima Valley of Washington State and randomly assigned them to receive an educational intervention (n = 12) to reduce children's pesticide exposure or usual care (n = 12). We assessed exposure to pesticides in nearly 200 adults and children during the pre and post-intervention periods by measuring metabolites in urine. We compared pre- and post-intervention exposures by expressing the child's pesticide metabolite concentration as a fraction of the adult's concentration living in the same household, because the amount of pesticides applied during the collection periods varied. Exposures in our community were consistently higher, sometimes above the 95th percentile of the exposures reported by the National Health and Nutrition Examination Survey (NHANES). While intervention and control communities demonstrated a reduction in the ratio of child to adult exposure, this reduction was more pronounced in intervention communities (2.7-fold, p < 0.001 compared to 1.7-fold, p = 0.052 for intervention and control, respectively). By examining the child/adult biomarker ratio, we demonstrated that our community-based intervention was effective in reducing pesticide exposure to children in agricultural communities.


Asunto(s)
Agricultura , Exposición a Riesgos Ambientales/análisis , Composición Familiar , Compuestos Organofosforados/análisis , Plaguicidas/análisis , Adulto , Niño , Preescolar , Agricultores , Femenino , Humanos , Masculino , Encuestas Nutricionales , Washingtón
15.
J Expo Sci Environ Epidemiol ; 29(3): 379-388, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30254255

RESUMEN

Reducing residential pesticide exposure requires identification of exposure pathways. Compared to the agriculture worker 'take-home' and residential use pathways, evidence of the 'drift' pathway to pesticide exposure has been inconsistent. Questionnaire data from individuals (n = 99) and dust samples (n = 418) from households across three growing seasons in 2011 were from the For Healthy Kids! study. Summed dimethyl organophosphate pesticide (OP) (Azinphos-Methyl, Phosmet, and Malathion) concentrations were quantified from house dust samples. Spatially-weighted orchard densities surrounding households were calculated based on various distances from homes. Regression models tested associations between orchard density, residential pesticide use, agriculture worker residents, and summed dimethyl OP house dust concentrations. Estimated relationships between orchard density and dimethyl OP in house dust were mixed: a 5% increase in orchard density resulted in 0.3 and 0.5% decreases in dimethyl OP house dust concentrations when considering land-cover 750 m or 1250 m away from households, respectively, but null associations with land-cover 60 m or 200 m away. Dimethyl OP house dust concentrations were 400% higher within homes where at least two residents were agriculture workers. Despite inconclusive evidence for the drift pathway due to potential for bias, relationships between number of agriculture workers and dimethyl OP house dust concentration underscores the take-home pathway.


Asunto(s)
Agricultura , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Exposición Profesional/análisis , Compuestos Organofosforados/análisis , Residuos de Plaguicidas/análisis , Adulto , Femenino , Vivienda , Humanos , Masculino
16.
Environ Health Perspect ; 127(1): 17003, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30624099

RESUMEN

BACKGROUND: Children are especially vulnerable to pesticide exposure and can suffer lasting health effects. Because children of farmworkers are exposed to a variety of pesticides throughout development, it is important to explore temporal patterns of coexposures. OBJECTIVES: The objectives of this study were to characterize the pesticide co-exposures, determine how they change over time, and assess differences between farmworker and nonfarmworker households. METHODS: Dust collected from 40 farmworker and 35 nonfarmworker households in the Yakima Valley of the State of Washington in 2005 and then again in 2011 was analyzed for 99 pesticides. Eighty-seven pesticides representing over 28 classes were detected. Pesticides were grouped into classes using U.S. EPA pesticide chemical classifications, and trends in concentrations were analyzed at the class level. RESULTS: Levels of organophosphates, pyridazinones, and phenols significantly decreased between 2005 and 2011 in both farmworker and nonfarmworker households. Levels of anilides, 2,6-dinitroanilines, chlorophenols, triclosan, and guanidines significantly increased in both farmworker and nonfarmworker households in 2011 vs. 2005. Among farmworkers alone, there were significantly lower levels of N-methyl carbamates and neonicotinoids in 2011. CONCLUSIONS: We observed significant reductions in the concentrations of many pesticides over time in both farmworker and nonfarmworker households. Although nonfarmworker households generally had lower concentrations of pesticides, it is important to note that in comparison with NHANES participants, nonfarmworkers and their families still had significantly higher concentrations of urinary pesticide metabolites. This finding highlights the importance of detailed longitudinal exposure monitoring to capture changes in agricultural and residential pesticide use over time. This foundation provides an avenue to track longitudinal pesticide exposures in an intervention or regulatory context. https://doi.org/10.1289/EHP3644.


Asunto(s)
Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Agricultores , Plaguicidas/análisis , Vivienda , Humanos , Estudios Longitudinales , Exposición Profesional/análisis , Estaciones del Año , Washingtón
17.
Environ Health Perspect ; 116(5): 687-94, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18470300

RESUMEN

BACKGROUND: Exposure to organophosphate (OP) pesticides is an occupational hazard for farmworkers and affects their children through the take-home pathway. OBJECTIVES: We examined the effectiveness of a randomized community intervention to reduce pesticide exposure among farmworkers and their children. METHODS: We conducted a baseline survey of a cross-sectional sample of farmworkers (year 1) in 24 participating communities. Communities were randomized to intervention or control. After 2 years of intervention, a new cross-sectional survey of farmworkers was conducted (year 4). Farmworkers with a child 2-6 years of age were asked to participate in a substudy in which urine was collected from the farmworker and child, and dust was collected from the home and the vehicle driven to work. RESULTS: The median concentration of urinary metabolites was higher in year 4 than in year 1 for dimethylthiophosphate (DMTP) and dimethyldithiophosphate in adults and for DMTP for children. There were significant increases within both the intervention and control communities between year 1 and year 4 (p < 0.005); however, the differences were not significant between study communities after adjusting for year (p = 0.21). The dust residue data showed azinphos-methyl having the highest percentage of detects in vehicles (86% and 84% in years 1 and 4, respectively) and in house dust (85% and 83% in years 1 and 4, respectively). There were no significant differences between intervention and control communities after adjusting for year (p = 0.49). CONCLUSIONS: We found no significant decreases in urinary pesticide metabolite concentrations or in pesticide residue concentrations in house and vehicle dust from intervention community households compared with control community households after adjusting for baseline. These negative findings may have implications for future community-wide interventions.


Asunto(s)
Agricultura , Redes Comunitarias/organización & administración , Exposición Profesional/prevención & control , Organofosfatos/análisis , Residuos de Plaguicidas/análisis , Adulto , Niño , Preescolar , Estudios Transversales , Polvo/análisis , Vivienda , Humanos , Entrevistas como Asunto , Organofosfatos/orina , Relaciones Padres-Hijo , Residuos de Plaguicidas/toxicidad , Washingtón
18.
Artículo en Inglés | MEDLINE | ID: mdl-18161053

RESUMEN

Computational, systems-based approaches can provide a quantitative construct for evaluating risk in the context of mechanistic data. Previously, we developed computational models for the rat, mouse, rhesus monkey, and human, describing the acquisition of adult neuron number in the neocortex during the key neurodevelopmental processes of neurogenesis and synaptogenesis. Here we apply mechanistic data from the rat describing ethanol-induced toxicity in the developing neocortex to evaluate the utility of these models for analyzing neurodevelopmental toxicity across species. Our model can explain long-term neocortical neuronal loss in the rodent model after in utero exposure to ethanol based on inhibition of proliferation during neurogenesis. Our human model predicts a significant neuronal deficit after daily peak BECs reaching 10-20 mg/dl, which is the approximate BEC reached after drinking one standard drink within one hour. In contrast, peak daily BECs of 100 mg/dl are necessary to predict similar deficits in the rat. Our model prediction of increased sensitivity of primate species to ethanol-induced inhibition of proliferation is based on application of in vivo experimental data from primates showing a prolonged rapid growth period in the primate versus rodent neuronal progenitor population. To place our predictions into a broader context, we evaluate the evidence for functional low-dose effects across rats, monkeys, and humans. Results from this critical evaluation suggest subtle effects are evident at doses causing peak BECs of approximately 20 mg/dl daily, corroborating our model predictions. Our example highlights the utility of a systems-based modeling approach in risk assessment.


Asunto(s)
Anomalías Inducidas por Medicamentos , Biología Computacional/métodos , Etanol/toxicidad , Modelos Neurológicos , Neocórtex/efectos de los fármacos , Teratógenos/toxicidad , Adulto , Animales , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Macaca mulatta , Ratones , Neocórtex/embriología , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Medición de Riesgo , Especificidad de la Especie
19.
Artículo en Inglés | MEDLINE | ID: mdl-29350469

RESUMEN

Engineered nanomaterials are currently under review for their potential toxicity; however, their use in consumer/commercial products has continued to outpace risk assessments. In vitro methods may be utilized as tools to improve the efficiency of risk assessment approaches. We propose a framework to compare relationships between previously published in vitro and in vivo toxicity assessments of cadmium-selenium containing quantum dots (QDs) using benchmark dose (BMD) and dosimetric assessment methods. Although data were limited this approach was useful for identifying sensitive assays and strains. In vitro studies assessed effects of QDs in three pulmonary cell types across two mouse strains. Significant dose-response effects were modeled and a standardized method of BMD analysis was performed as a function of both exposure dose and dosimetric dose. In vivo studies assessed pulmonary effects of QD exposure across eight mouse strains. BMD analysis served as a basis for relative comparison with in vitro studies. We found consistent responses in common endpoints between in vitro and in vivo studies. Strain sensitivity was consistent between in vitro and in vivo studies, showing A/J mice more sensitive to QDs. Cell types were found to differentially take up QDs. Dosimetric adjustments identified similar sensitivity among cell types. Thus, BMD analysis can be used as an effective tool to compare the sensitivity of different strains, cell types, and assays to QDs. These methods allow for in vitro assays to be used to predict in vivo responses, improve the efficiency of in vivo studies, and allow for prioritization of nanomaterial assessments. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Puntos Cuánticos/toxicidad , Pruebas de Toxicidad , Animales , Benchmarking , Investigación Biomédica , Línea Celular , Humanos , Ratones , Nanomedicina , Medición de Riesgo
20.
Toxicol In Vitro ; 48: 33-44, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29269118

RESUMEN

In vitro micromass culture systems have been proposed as an alternative method for developmental toxicity assessment to reduce the need for resource-intensive in vivo toxicity testing. In this study, a three-dimensional in vitro embryonic mouse midbrain culture system is characterized in two mouse strains to facilitate gene x environment considerations. Gestational day (GD) 11 C57BL/6 or GD 12 A/J mouse midbrain cells were isolated and cultured in high-density micromass format for 22days in vitro (DIV). Hematoxylin intensity and protein content revealed that neuronal differentiation increases linearly over time in both C57BL/6 and A/J cultures. Protein expression showed time-dependent proliferation markers (PCNA) increased significantly between DIV 4-6 compared to DIV 1. Early and late differentiation markers (e.g. ß-tubulin III and NMDAɛ1) were expressed between DIV 6-8 and DIV 8-15, respectively. Immunohistochemistry and protein expression results for proliferation and differentiation markers were concordant. Protein expression patterns for the two mouse strain micromass systems were similar. This study characterizes a novel method for investigating early neurogenesis and may be used to characterize neurodevelopmental toxicity in vitro. Our findings show how the use of different mouse strains in neurodevelopmental studies may extend test systems for gene and environment interaction studies.


Asunto(s)
Mesencéfalo/embriología , Mesencéfalo/patología , Síndromes de Neurotoxicidad/patología , Pruebas de Toxicidad/métodos , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Inmunohistoquímica , Ratones , Ratones Endogámicos A , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Embarazo , Antígeno Nuclear de Célula en Proliferación/biosíntesis , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA