Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Gene Ther ; 29(6): 322-332, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34404916

RESUMEN

While generally referred to as "non-integrating" vectors, adenovirus vectors have the potential to integrate into host DNA via random, illegitimate (nonhomologous) recombination. The present study provides a quantitative assessment of the potential integration frequency of adenovirus 5 (Ad5)-based vectors following intravenous injection in mice, a common route of administration in gene therapy applications particularly for transgene expression in liver. We examined the uptake level and persistence in liver of first generation (FG) and helper-dependent (HD) Ad5 vectors containing the mouse leptin transgene. As expected, the persistence of the HD vector was markedly higher than that of the FG vector. For both vectors, the majority of the vector DNA remained extrachromosomal and predominantly in the form of episomal monomers. However, using a quantitative gel-purification-based integration assay, a portion of the detectable vector was found to be associated with high molecular weight (HMW) genomic DNA, indicating potential integration with a frequency of up to ~44 and 7000 integration events per µg cellular genomic DNA (or ~0.0003 and 0.05 integrations per cell, respectively) for the FG and HD Ad5 vectors, respectively, following intravenous injection of 1 × 1011 virus particles. To confirm integration occurred (versus residual episomal vector DNA co-purifying with genomic DNA), we characterized nine independent integration events using Repeat-Anchored Integration Capture (RAIC) PCR. Sequencing of the insertion sites suggests that both of the vectors integrate randomly, but within short segments of homology between the vector breakpoint and the insertion site. Eight of the nine integrations were in intergenic DNA and one was within an intron. These findings represent the first quantitative assessment and characterization of Ad5 vector integration following intravenous administration in vivo in wild-type mice.


Asunto(s)
ADN , Vectores Genéticos , Adenoviridae/genética , Animales , Vectores Genéticos/genética , Genómica , Inyecciones Intravenosas , Hígado/metabolismo , Ratones
2.
Toxicol Sci ; 177(1): 121-139, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32559289

RESUMEN

Early risk assessment of drug-induced liver injury (DILI) potential for drug candidates remains a major challenge for pharmaceutical development. We have previously developed a set of rat liver transcriptional biomarkers in short-term toxicity studies to inform the potential of drug candidates to generate a high burden of chemically reactive metabolites that presents higher risk for human DILI. Here, we describe translation of those NRF1-/NRF2-mediated liver tissue biomarkers to an in vitro assay using an advanced micropatterned coculture system (HEPATOPAC) with primary hepatocytes from male Wistar Han rats. A 9-day, resource-sparing and higher throughput approach designed to identify new chemical entities with lower reactive metabolite-forming potential was qualified for internal decision making using 93 DILI-positive and -negative drugs. This assay provides 81% sensitivity and 90% specificity in detecting hepatotoxicants when a positive test outcome is defined as the bioactivation signature score of a test drug exceeding the threshold value at an in vitro test concentration that falls within 3-fold of the estimated maximum drug concentration at the human liver inlet following highest recommended clinical dose administrations. Using paired examples of compounds from distinct chemical series and close structural analogs, we demonstrate that this assay can differentiate drugs with lower DILI risk. The utility of this in vitro transcriptomic approach was also examined using human HEPATOPAC from a single donor, yielding 68% sensitivity and 86% specificity when the aforementioned criteria are applied to the same 93-drug test set. Routine use of the rat model has been adopted with deployment of the human model as warranted on a case-by-case basis. This in vitro transcriptomic signature-based strategy can be used early in drug discovery to derisk DILI potential from chemically reactive metabolites by guiding structure-activity relationship hypotheses and candidate selection.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Preparaciones Farmacéuticas , Animales , Masculino , Ratas , Ratas Wistar , Transcriptoma
3.
FASEB J ; 21(13): 3522-33, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17575264

RESUMEN

A femtosecond laser beam gene transduction (SG-LBGT) system is described as a novel and efficient method of intradermal (i.d.) nonviral gene delivery in mice by permeabilizing cells utilizing femtosecond laser pulses. Using this approach, significant gene expression and efficient dermal transduction lasting for >7 months were obtained. The ability of this new DNA gene transfer method to enhance genetic vaccination was tested in BALB/C mice. A single i.d. injection of a plasmid (10 microg) containing the hepatitis B virus (HBV) surface antigen (HBsAg), followed by pulses of laser, induced high titers of HBsAg-specific antibodies lasting for >210 days and increased levels of IgG1, IgG2a, IFNgamma, and IL-4, indicating the activation of both Th1 and Th2 cells. Moreover, mice vaccinated using the SG-LBGT followed by challenge with pHBV showed increased protection against viral challenge, as detected by decreased levels of HBV DNA, suggesting an efficient Th1 effect against HBV-infected replicating cells. Tumor growth retardation was induced in vaccinated mice challenged with an HBsAg-expressing syngeneic tumor. In most of the parameters tested, administration of plasmid followed by laser application was significantly more effective and prolonged than that of plasmid alone. Tissue damage was not detected and integration of the plasmid into the host genomic DNA probably did not occur. We suggest that the LBGT method is an efficient and safe technology for in vivo gene expression and vaccination and emphasizes its potential therapeutic applications for i.d. nonviral gene delivery.


Asunto(s)
ADN/administración & dosificación , Expresión Génica , Vacunas de ADN/administración & dosificación , Animales , Células Cultivadas , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Inmunoglobulina G/metabolismo , Interferón gamma/metabolismo , Interleucina-4/metabolismo , Rayos Láser , Ratones , Ratones Endogámicos BALB C , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/inmunología , Células Th2/metabolismo
4.
J Pharmacol Toxicol Methods ; 63(2): 174-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20884365

RESUMEN

INTRODUCTION: Various animal models are routinely used to evaluate the efficacy and toxicity of small interfering RNA (siRNA) therapeutics. Given that the most common measure of efficacy with siRNA therapeutics is mRNA knockdown, the development of a single assay for quantification of siRNA-mediated mRNA knockdown in multiple species would provide significant time and cost-savings during preclinical development. METHODS AND RESULTS: We have developed an assay targeting short consensus sequences of a particular mRNA in multiple species using the principles of a recently-reported stem-loop RT-qPCR method (Chen et al., 2005). The multi-species RT-qPCR assay is highly sensitive, reproducible, has a dynamic range of seven orders of magnitude, and it can be used to quantify a specific mRNA in crude tissue homogenates without the need for RNA purification. Compared to the limitations of conventional RT-qPCR assays, this assay provides a simple and robust tool for mRNA quantification to evaluate siRNA-mediated mRNA knockdown. DISCUSSION: This assay can potentially become a routine method for mRNA quantification to evaluate siRNA-mediated mRNA knockdown.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Interferente Pequeño/análisis , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Estudios de Evaluación como Asunto , Femenino , Haplorrinos , Humanos , Secuencias Invertidas Repetidas , Ratones , ARN Interferente Pequeño/aislamiento & purificación , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA