Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nature ; 609(7927): 597-604, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978196

RESUMEN

A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1-3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4-8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.


Asunto(s)
Actomiosina , Condensados Biomoleculares , Caenorhabditis elegans , Oocitos , Citoesqueleto de Actina/metabolismo , Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Actinas/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Animales , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Emulsiones/química , Emulsiones/metabolismo , Oocitos/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(25): e2318838121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38870057

RESUMEN

Hertwig's rule states that cells divide along their longest axis, usually driven by forces acting on the mitotic spindle. Here, we show that in contrast to this rule, microtubule-based pulling forces in early Caenorhabditis elegans embryos align the spindle with the short axis of the cell. We combine theory with experiments to reveal that in order to correct this misalignment, inward forces generated by the constricting cytokinetic ring rotate the entire cell until the spindle is aligned with the cell's long axis. Experiments with slightly compressed mouse zygotes indicate that this cytokinetic ring-driven mechanism of ensuring Hertwig's rule is general for cells capable of rotating inside a confining shell, a scenario that applies to early cell divisions of many systems.


Asunto(s)
Caenorhabditis elegans , Huso Acromático , Animales , Caenorhabditis elegans/embriología , Ratones , Huso Acromático/metabolismo , Microtúbulos/metabolismo , Citocinesis/fisiología , Rotación , Cigoto/metabolismo , Cigoto/citología , Cigoto/crecimiento & desarrollo , Embrión no Mamífero/citología , Desarrollo Embrionario/fisiología , Modelos Biológicos
3.
Mol Cell ; 69(6): 1046-1061.e5, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29547717

RESUMEN

A single mutagen can generate multiple different types of DNA lesions. How different repair pathways cooperate in complex DNA lesions, however, remains largely unclear. Here we measured, clustered, and modeled the kinetics of recruitment and dissociation of 70 DNA repair proteins to laser-induced DNA damage sites in HeLa cells. The precise timescale of protein recruitment reveals that error-prone translesion polymerases are considerably delayed compared to error-free polymerases. We show that this is ensured by the delayed recruitment of RAD18 to double-strand break sites. The time benefit of error-free polymerases disappears when PARP inhibition significantly delays PCNA recruitment. Moreover, removal of PCNA from complex DNA damage sites correlates with RPA loading during 5'-DNA end resection. Our systematic study of the dynamics of DNA repair proteins in complex DNA lesions reveals the multifaceted coordination between the repair pathways and provides a kinetics-based resource to study genomic instability and anticancer drug impact.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Inestabilidad Genómica , Células HeLa , Humanos , Cinética , Modelos Genéticos , Ftalazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
4.
Nature ; 568(7753): E14, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30971828

RESUMEN

In this Letter, the sentence starting: 'For instance, Tribolium and Drosophila inflated are direct targets of the mesoderm…' has been corrected online; see accompanying Amendment.

5.
Nature ; 568(7752): 395-399, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918398

RESUMEN

During gastrulation, physical forces reshape the simple embryonic tissue to form the complex body plans of multicellular organisms1. These forces often cause large-scale asymmetric movements of the embryonic tissue2,3. In many embryos, the gastrulating tissue is surrounded by a rigid protective shell4. Although it is well-recognized that gastrulation movements depend on forces that are generated by tissue-intrinsic contractility5,6, it is not known whether interactions between the tissue and the protective shell provide additional forces that affect gastrulation. Here we show that a particular part of the blastoderm tissue of the red flour beetle (Tribolium castaneum) tightly adheres in a temporally coordinated manner to the vitelline envelope that surrounds the embryo. This attachment generates an additional force that counteracts tissue-intrinsic contractile forces to create asymmetric tissue movements. This localized attachment depends on an αPS2 integrin (inflated), and the knockdown of this integrin leads to a gastrulation phenotype that is consistent with complete loss of attachment. Furthermore, analysis of another integrin (the αPS3 integrin, scab) in the fruit fly (Drosophila melanogaster) suggests that gastrulation in this organism also relies on adhesion between the blastoderm and the vitelline envelope. Our findings reveal a conserved mechanism through which the spatiotemporal pattern of tissue adhesion to the vitelline envelope provides controllable, counteracting forces that shape gastrulation movements in insects.


Asunto(s)
Blastodermo/metabolismo , Tipificación del Cuerpo/fisiología , Drosophila melanogaster/embriología , Gastrulación/fisiología , Membrana Vitelina/metabolismo , Animales , Coristoma/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Integrinas/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(10): e2107871119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238639

RESUMEN

SignificanceBiomolecular condensates are intracellular organelles that are not bounded by membranes and often show liquid-like, dynamic material properties. They typically contain various types of proteins and nucleic acids. How the interaction of proteins and nucleic acids finally results in dynamic condensates is not fully understood. Here we use optical tweezers and fluorescence microscopy to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) condenses with individual molecules of single- and double-stranded DNA. We find that FUS adsorbs on DNA in a monolayer and hence generates an effectively sticky FUS-DNA polymer that collapses and finally forms a dynamic, reversible FUS-DNA co-condensate. We speculate that protein monolayer-based protein-nucleic acid co-condensation is a general mechanism for forming intracellular membraneless organelles.


Asunto(s)
ADN de Cadena Simple/química , ADN/química , Proteína FUS de Unión a ARN/química , Humanos , Microscopía Fluorescente
8.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972425

RESUMEN

Proper left-right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left-right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left-right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Corteza Cerebral/metabolismo , Forminas/metabolismo , Transducción de Señal/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animales , Animales Modificados Genéticamente , Blastómeros/citología , Blastómeros/metabolismo , Tipificación del Cuerpo/genética , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Corteza Cerebral/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Forminas/genética , Lateralidad Funcional/genética , Lateralidad Funcional/fisiología , Transducción de Señal/genética , Torque , Proteína de Unión al GTP rhoA/genética
9.
Nat Rev Mol Cell Biol ; 12(6): 392-8, 2011 06.
Artículo en Inglés | MEDLINE | ID: mdl-21602907

RESUMEN

Nearly 60 years ago, Alan Turing showed theoretically how two chemical species, termed morphogens, diffusing and reacting with each other can generate spatial patterns. Diffusion plays a crucial part in transporting chemical signals through space to establish the length scale of the pattern. When coupled to chemical reactions, mechanical processes - forces and flows generated by motor proteins - can also define length scales and provide a mechanochemical basis for morphogenesis. forces and flows generated by motor proteins - can also define length scales and provide a mechanochemical basis for morphogenesis.


Asunto(s)
Diferenciación Celular , Proteínas Motoras Moleculares/metabolismo , Morfogénesis , Animales , Difusión , Modelos Biológicos , Transducción de Señal
10.
Nature ; 537(7618): 107-111, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27556945

RESUMEN

An early step in intracellular transport is the selective recognition of a vesicle by its appropriate target membrane, a process regulated by Rab GTPases via the recruitment of tethering effectors. Membrane tethering confers higher selectivity and efficiency to membrane fusion than the pairing of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) alone. Here we address the mechanism whereby a tethered vesicle comes closer towards its target membrane for fusion by reconstituting an endosomal asymmetric tethering machinery consisting of the dimeric coiled-coil protein EEA1 (refs 6, 7) recruited to phosphatidylinositol 3-phosphate membranes and binding vesicles harbouring Rab5. Surprisingly, structural analysis reveals that Rab5:GTP induces an allosteric conformational change in EEA1, from extended to flexible and collapsed. Through dynamic analysis by optical tweezers, we confirm that EEA1 captures a vesicle at a distance corresponding to its extended conformation, and directly measure its flexibility and the forces induced during the tethering reaction. Expression of engineered EEA1 variants defective in the conformational change induce prominent clusters of tethered vesicles in vivo. Our results suggest a new mechanism in which Rab5 induces a change in flexibility of EEA1, generating an entropic collapse force that pulls the captured vesicle towards the target membrane to initiate docking and fusion.


Asunto(s)
Endosomas/metabolismo , Entropía , Fusión de Membrana , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Regulación Alostérica , Guanosina Trifosfato/metabolismo , Humanos , Pinzas Ópticas , Fosfatos de Fosfatidilinositol/metabolismo , Docilidad , Unión Proteica , Conformación Proteica , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/genética
11.
Proc Natl Acad Sci U S A ; 113(45): 12733-12738, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791062

RESUMEN

In eukaryotes, gene expression depends on chromatin organization. However, how chromatin affects the transcription dynamics of individual RNA polymerases has remained elusive. Here, we use dual trap optical tweezers to study single yeast RNA polymerase II (Pol II) molecules transcribing along a DNA template with two nucleosomes. The slowdown and the changes in pausing behavior within the nucleosomal region allow us to determine a drift coefficient, χ, which characterizes the ability of the enzyme to recover from a nucleosomal backtrack. Notably, χ can be used to predict the probability to pass the first nucleosome. Importantly, the presence of a second nucleosome changes χ in a manner that depends on the spacing between the two nucleosomes, as well as on their rotational arrangement on the helical DNA molecule. Our results indicate that the ability of Pol II to pass the first nucleosome is increased when the next nucleosome is turned away from the first one to face the opposite side of the DNA template. These findings help to rationalize how chromatin arrangement affects Pol II transcription dynamics.

12.
Proc Natl Acad Sci U S A ; 113(11): 2946-51, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929337

RESUMEN

During DNA transcription, RNA polymerases often adopt inactive backtracked states. Recovery from backtracks can occur by 1D diffusion or cleavage of backtracked RNA, but how polymerases make this choice is unknown. Here, we use single-molecule optical tweezers experiments and stochastic theory to show that the choice of a backtrack recovery mechanism is determined by a kinetic competition between 1D diffusion and RNA cleavage. Notably, RNA polymerase I (Pol I) and Pol II recover from shallow backtracks by 1D diffusion, use RNA cleavage to recover from intermediary depths, and are unable to recover from extensive backtracks. Furthermore, Pol I and Pol II use distinct mechanisms to avoid nonrecoverable backtracking. Pol I is protected by its subunit A12.2, which decreases the rate of 1D diffusion and enables transcript cleavage up to 20 nt. In contrast, Pol II is fully protected through association with the cleavage stimulatory factor TFIIS, which enables rapid recovery from any depth by RNA cleavage. Taken together, we identify distinct backtrack recovery strategies of Pol I and Pol II, shedding light on the evolution of cellular functions of these key enzymes.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Elongación de la Transcripción Genética/fisiología , Difusión , Modelos Químicos , Movimiento (Física) , Pinzas Ópticas , Unión Proteica , Subunidades de Proteína , ARN Polimerasa I/química , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN de Hongos/biosíntesis , ARN Mensajero/biosíntesis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Eliminación de Secuencia , Procesos Estocásticos , Tiempo , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo
13.
Rep Prog Phys ; 81(7): 076601, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29542442

RESUMEN

We review the general hydrodynamic theory of active soft materials that is motivated in particular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we identify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues.

14.
Nano Lett ; 17(9): 5699-5705, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28819981

RESUMEN

Molecular motors, highly efficient biological nanomachines, hold the potential to be employed for a wide range of nanotechnological applications. Toward this end, kinesin, dynein, or myosin motor proteins are commonly surface-immobilized within engineered environments in order to transport cargo attached to cytoskeletal filaments. Being able to flexibly control the direction of filament motion, and in particular on planar, non-topographical surfaces, has, however, remained challenging. Here, we demonstrate the applicability of a UV-laser-based ablation technique to programmably generate highly localized patterns of functional kinesin-1 motors with different shapes and sizes on PLL-g-PEG-coated polystyrene surfaces. Straight and curved motor tracks with widths of less than 500 nm could be generated in a highly reproducible manner and proved to reliably guide gliding microtubules. Though dependent on track curvature, the characteristic travel lengths of the microtubules on the tracks significantly exceeded earlier predictions. Moreover, we experimentally verified the performance of complex kinesin-1 patterns, recently designed by evolutionary algorithms for controlling the global directionality of microtubule motion on large-area substrates.

15.
Biophys J ; 110(6): 1421-9, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27028651

RESUMEN

Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell- and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example, the characteristic time of stress relaxation (the Maxwell time τM) in the actomyosin sets the timescale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length λ) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer in vivo directly from laser ablation experiments. For this we investigate the cortical response to laser ablation in the one-cell-stage Caenorhabditis elegans embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse-grained physical description of the cortex in terms of a two-dimensional thin film of an active viscoelastic gel. To determine the Maxwell time τM, the hydrodynamic length λ, the ratio of active stress Î¶Δµ, and per-area friction γ, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best-fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. Our method provides an accurate and robust means for measuring physical parameters of the actomyosin cortical layer. It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights into the active mechanics processes that govern tissue-scale morphogenesis.


Asunto(s)
Caenorhabditis elegans/citología , Pez Cebra/metabolismo , Actomiosina/metabolismo , Animales , Fenómenos Biofísicos , Caenorhabditis elegans/embriología , Elasticidad , Gastrulación , Terapia por Láser , Viscosidad , Pez Cebra/embriología
16.
Nature ; 467(7315): 617-21, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20852613

RESUMEN

Asymmetric cell divisions are essential for the development of multicellular organisms. To proceed, they require an initially symmetric cell to polarize. In Caenorhabditis elegans zygotes, anteroposterior polarization is facilitated by a large-scale flow of the actomyosin cortex, which directs the asymmetry of the first mitotic division. Cortical flows appear in many contexts of development, but their underlying forces and physical principles remain poorly understood. How actomyosin contractility and cortical tension interact to generate large-scale flow is unclear. Here we report on the subcellular distribution of cortical tension in the polarizing C. elegans zygote, which we determined using position- and direction-sensitive laser ablation. We demonstrate that cortical flow is associated with anisotropies in cortical tension and is not driven by gradients in cortical tension, which contradicts previous proposals. These experiments, in conjunction with a theoretical description of active cortical mechanics, identify two prerequisites for large-scale cortical flow: a gradient in actomyosin contractility to drive flow and a sufficiently large viscosity of the cortex to allow flow to be long-ranged. We thus reveal the physical requirements of large-scale intracellular cortical flow that ensure the efficient polarization of the C. elegans zygote.


Asunto(s)
Actomiosina/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Polaridad Celular/fisiología , Movimiento , Animales , Anisotropía , Caenorhabditis elegans/embriología , Rayos Láser , Mitosis , Viscosidad , Cigoto/citología , Cigoto/metabolismo , Proteínas de Unión al GTP rho/metabolismo
17.
Development ; 138(22): 5003-13, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22028032

RESUMEN

Nuclei in the proliferative pseudostratified epithelia of vastly different organisms exhibit a characteristic dynamics - the so-called interkinetic nuclear migration (IKNM). Although these movements are thought to be intimately tied to the cell cycle, little is known about the relationship between IKNM and distinct phases of the cell cycle and the role that this association plays in ensuring balanced proliferation and subsequent differentiation. Here, we perform a quantitative analysis of modes of nuclear migration during the cell cycle using a marker that enables the first unequivocal differentiation of all four phases in proliferating neuroepithelial cells in vivo. In zebrafish neuroepithelia, nuclei spend the majority of the cell cycle in S phase, less time in G1, with G2 and M being noticeably shorter still in comparison. Correlating cell cycle phases with nuclear movements shows that IKNM comprises rapid apical nuclear migration during G2 phase and stochastic nuclear motion during G1 and S phases. The rapid apical migration coincides with the onset of G2, during which we find basal actomyosin accumulation. Inhibiting the transition from G2 to M phase induces a complete stalling of nuclei, indicating that IKNM and cell cycle continuation cannot be uncoupled and that progression from G2 to M is a prerequisite for rapid apical migration. Taken together, these results suggest that IKNM involves an actomyosin-driven contraction of cytoplasm basal to the nucleus during G2, and that the stochastic nuclear movements observed in other phases arise passively due to apical migration in neighboring cells.


Asunto(s)
Núcleo Celular/fisiología , Fase G2/fisiología , Células Neuroepiteliales/ultraestructura , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Polaridad Celular/genética , Polaridad Celular/fisiología , Proliferación Celular , Embrión no Mamífero , Fase G2/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Movimiento/fisiología , Células Neuroepiteliales/metabolismo , Células Neuroepiteliales/fisiología , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Retina/citología , Retina/embriología , Retina/metabolismo , Retina/fisiología , Rombencéfalo/citología , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Rombencéfalo/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/fisiología
18.
Phys Rev Lett ; 123(13): 130001, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31697547

Asunto(s)
Física , Rotación
19.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38760174

RESUMEN

Amyotrophic lateral sclerosis (ALS) leads to death within 2-5 yr. Currently, available drugs only slightly prolong survival. We present novel insights into the pathophysiology of Superoxide Dismutase 1 (SOD1)- and in particular Fused In Sarcoma (FUS)-ALS by revealing a supposedly central role of glycolic acid (GA) and D-lactic acid (DL)-both putative products of the Parkinson's disease associated glyoxylase DJ-1. Combined, not single, treatment with GA/DL restored axonal organelle phenotypes of mitochondria and lysosomes in FUS- and SOD1-ALS patient-derived motoneurons (MNs). This was not only accompanied by restoration of mitochondrial membrane potential but even dependent on it. Despite presenting an axonal transport deficiency as well, TDP43 patient-derived MNs did not share mitochondrial depolarization and did not respond to GA/DL treatment. GA and DL also restored cytoplasmic mislocalization of FUS and FUS recruitment to DNA damage sites, recently reported being upstream of the mitochondrial phenotypes in FUS-ALS. Whereas these data point towards the necessity of individualized (gene-) specific therapy stratification, it also suggests common therapeutic targets across different neurodegenerative diseases characterized by mitochondrial depolarization.


Asunto(s)
Esclerosis Amiotrófica Lateral , Glicolatos , Ácido Láctico , Mitocondrias , Proteína Desglicasa DJ-1 , Proteína FUS de Unión a ARN , Superóxido Dismutasa-1 , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Glicolatos/metabolismo , Glicolatos/farmacología , Mitocondrias/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Ácido Láctico/metabolismo , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/genética , Potencial de la Membrana Mitocondrial , Neuronas Motoras/metabolismo , Lisosomas/metabolismo
20.
Nature ; 446(7137): 820-3, 2007 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-17361130

RESUMEN

RNA polymerase II (RNAP II) is responsible for transcribing all messenger RNAs in eukaryotic cells during a highly regulated process that is conserved from yeast to human, and that serves as a central control point for cellular function. Here we investigate the transcription dynamics of single RNAP II molecules from Saccharomyces cerevisiae against force and in the presence and absence of TFIIS, a transcription elongation factor known to increase transcription through nucleosomal barriers. Using a single-molecule dual-trap optical-tweezers assay combined with a novel method to enrich for active complexes, we found that the response of RNAP II to a hindering force is entirely determined by enzyme backtracking. Surprisingly, RNAP II molecules ceased to transcribe and were unable to recover from backtracks at a force of 7.5 +/- 2 pN, only one-third of the force determined for Escherichia coli RNAP. We show that backtrack pause durations follow a t(-3/2) power law, implying that during backtracking RNAP II diffuses in discrete base-pair steps, and indicating that backtracks may account for most of RNAP II pauses. Significantly, addition of TFIIS rescued backtracked enzymes and allowed transcription to proceed up to a force of 16.9 +/- 3.4 pN. Taken together, these results describe a regulatory mechanism of transcription elongation in eukaryotes by which transcription factors modify the mechanical performance of RNAP II, allowing it to operate against higher loads.


Asunto(s)
ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Fenómenos Biomecánicos , Escherichia coli/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Moldes Genéticos , Factores de Elongación Transcripcional/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA