Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Biol Reprod ; 111(4): 959-974, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39077996

RESUMEN

Sertoli cells, omnipresent, somatic cells within the seminiferous tubules of the mammalian testis are essential to male fertility. Sertoli cells maintain the integrity of the testicular microenvironment, regulate hormone synthesis, and of particular importance, synthesize the active derivative of vitamin A, all trans retinoic acid (atRA), which is required for germ cell differentiation and the commitment of male germ cells to meiosis. Stages VIII-IX, when atRA synthesis occurs in the testis, coincide with multiple germ cell development and testicular restructuring events that rely on Sertoli cell gene products to proceed normally. In this study, we have synchronized and captured the mouse testis at four recurrent points of atRA synthesis to observe transcriptomic changes within Sertoli cells as mice age and the Sertoli cells are exposed to increasingly developed germ cell subtypes. This work provides comprehensive, high-resolution characterization of the timing of induction of functional Sertoli cell genes across the first wave of spermatogenesis, and outlines in silico predictions of germ cell derived signaling mechanisms targeting Sertoli cells. We have found that Sertoli cells adapt to their environment, especially to the needs of the germ cell populations present and establish germ-Sertoli cell and Sertoli-Sertoli cell junctions early but gain many of their known immune-regulatory and protein secretory functions in preparation for spermiogenesis and spermiation. Additionally, we have found unique patterns of germ-Sertoli signaling present at each endogenous pulse of atRA, suggesting individual functions of the various germ cells in germ-Sertoli communication.


Asunto(s)
Epitelio Seminífero , Células de Sertoli , Espermatogénesis , Células de Sertoli/metabolismo , Masculino , Animales , Epitelio Seminífero/metabolismo , Ratones , Espermatogénesis/fisiología , Tretinoina/metabolismo
2.
Physiol Rev ; 96(1): 1-17, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26537427

RESUMEN

Mammalian spermatogenesis requires a stem cell pool, a period of amplification of cell numbers, the completion of reduction division to haploid cells (meiosis), and the morphological transformation of the haploid cells into spermatozoa (spermiogenesis). The net result of these processes is the production of massive numbers of spermatozoa over the reproductive lifetime of the animal. One study that utilized homogenization-resistant spermatids as the standard determined that human daily sperm production (dsp) was at 45 million per day per testis (60). For each human that means ∼1,000 sperm are produced per second. A key to this level of gamete production is the organization and architecture of the mammalian testes that results in continuous sperm production. The seemingly complex repetitious relationship of cells termed the "cycle of the seminiferous epithelium" is driven by the continuous commitment of undifferentiated spermatogonia to meiosis and the period of time required to form spermatozoa. This commitment termed the A to A1 transition requires the action of retinoic acid (RA) on the undifferentiated spermatogonia or prospermatogonia. In stages VII to IX of the cycle of the seminiferous epithelium, Sertoli cells and germ cells are influenced by pulses of RA. These pulses of RA move along the seminiferous tubules coincident with the spermatogenic wave, presumably undergoing constant synthesis and degradation. The RA pulse then serves as a trigger to commit undifferentiated progenitor cells to the rigidly timed pathway into meiosis and spermatid differentiation.


Asunto(s)
Meiosis , Espermatogénesis , Espermatozoides/fisiología , Células Madre/fisiología , Testículo/fisiología , Animales , Linaje de la Célula , Proliferación Celular , Humanos , Masculino , Morfogénesis , Transducción de Señal , Testículo/citología , Testículo/embriología , Tretinoina/metabolismo
3.
Development ; 145(13)2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29899137

RESUMEN

Spermatogenesis in mammals is a very complex, highly organized process, regulated in part by testosterone and retinoic acid (RA). Much is known about how RA and testosterone signaling pathways independently regulate this process, but there is almost no information regarding whether these two signaling pathways directly interact and whether RA is crucial for steroidogenic cell function. This study uses a transgenic mouse line that expresses a dominant-negative form of RA receptor α (RAR-DN) and the steroidogenic cell-specific Cre mouse line, Cyp17iCre, to generate male mice with steroidogenic cells unable to perform RA signaling. Testes of mutant mice displayed increased apoptosis of pachytene spermatocytes, an increased number of macrophages in the interstitium and a loss of advanced germ cells. Additionally, blocking RA signaling in Leydig cells resulted in increased permeability of the blood-testis barrier, decreased levels of the steroidogenic enzyme cytochrome P450 17a1 and decreased testosterone levels. Surprisingly, the epididymides of the mutant mice also displayed an abnormal phenotype. This study demonstrates that RA signaling is required in steroidogenic cells for their normal function and, thus, for male fertility.


Asunto(s)
Barrera Hematotesticular/metabolismo , Fertilidad/fisiología , Receptor alfa de Ácido Retinoico/metabolismo , Transducción de Señal/fisiología , Espermatocitos/metabolismo , Espermatogénesis/fisiología , Animales , Barrera Hematotesticular/citología , Masculino , Ratones , Ratones Transgénicos , Receptor alfa de Ácido Retinoico/genética , Espermatocitos/citología , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 17-alfa-Hidroxilasa/metabolismo
4.
Biol Reprod ; 105(6): 1591-1602, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34494084

RESUMEN

Sertoli cells are a critical component of the testis environment for their role in maintaining seminiferous tubule structure, establishing the blood-testis barrier, and nourishing maturing germ cells in a specialized niche. This study sought to uncover how Sertoli cells are regulated in the testis environment via germ cell crosstalk in the mouse. We found two major clusters of Sertoli cells as defined by their transcriptomes in Stages VII-VIII of the seminiferous epithelium and a cluster for all other stages. Additionally, we examined transcriptomes of germ cell-deficient testes and found that these existed in a state independent of either of the germ cell-sufficient clusters. Altogether, we highlight two main transcriptional states of Sertoli cells in an unperturbed testis environment, and a germ cell-deficient environment does not allow normal Sertoli cell transcriptome cycling and results in a state unique from either of those seen in Sertoli cells from a germ cell-sufficient environment.


Asunto(s)
Células de Sertoli/citología , Transducción de Señal , Espermatozoides/fisiología , Animales , Masculino , Ratones
5.
Mol Reprod Dev ; 88(2): 128-140, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33400349

RESUMEN

Spermatogonial development is a key process during spermatogenesis to prepare germ cells to enter meiosis. While the initial point of spermatogonial differentiation is well-characterized, the development of spermatogonia from the onset of differentiation to the point of meiotic entry has not been well defined. Further, STRA8 is highly induced at the onset of spermatogonial development but its function in spermatogonia has not been defined. To better understand how STRA8 impacts spermatogonia, we performed RNA-sequencing in both wild-type and STRA8 knockout mice at multiple timepoints during retinoic acid (RA)-stimulated spermatogonial development. As expected, in spermatogonia from wild-type mice we found that steady-state levels of many transcripts that define undifferentiated progenitor cells were decreased while transcripts that define the differentiating spermatogonia were increased as a result of the actions of RA. However, the spermatogonia from STRA8 knockout mice displayed a muted RA response such that there were more transcripts typical of undifferentiated cells and fewer transcripts typical of differentiating cells following RA action. While spermatogonia from STRA8 knockout mice can ultimately form spermatocytes that fail to complete meiosis, it appears that the defect likely begins as a result of altered messenger RNA levels during spermatogonial differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Regulación del Desarrollo de la Expresión Génica , Espermatogénesis/fisiología , Espermatogonias/crecimiento & desarrollo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Masculino , Meiosis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , RNA-Seq , Espermatogénesis/efectos de los fármacos , Espermatogénesis/genética , Transcripción Genética , Tretinoina/farmacología
6.
Cell Mol Life Sci ; 76(11): 2185-2198, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30729254

RESUMEN

RNA alternative polyadenylation contributes to the complexity of information transfer from genome to phenome, thus amplifying gene function. Here, we report the first X. tropicalis resource with 127,914 alternative polyadenylation (APA) sites derived from embryos and adults. Overall, APA networks play central roles in coordinating the maternal-zygotic transition (MZT) in embryos, sexual dimorphism in adults and longitudinal growth from embryos to adults. APA sites coordinate reprogramming in embryos before the MZT, but developmental events after the MZT due to zygotic genome activation. The APA transcriptomes of young adults are more variable than growing adults and male frog APA transcriptomes are more divergent than females. The APA profiles of young females were similar to embryos before the MZT. Enriched pathways in developing embryos were distinct across the MZT and noticeably segregated from adults. Briefly, our results suggest that the minimal functional units in genomes are alternative transcripts as opposed to genes.


Asunto(s)
Proteínas Anfibias/genética , Genoma , ARN Mensajero/genética , Caracteres Sexuales , Transcriptoma , Xenopus/genética , Proteínas Anfibias/metabolismo , Animales , Embrión no Mamífero , Desarrollo Embrionario , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Masculino , Anotación de Secuencia Molecular , Poliadenilación , ARN Mensajero/metabolismo , Factores Sexuales , Secuenciación del Exoma , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(28): E5635-E5644, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28630288

RESUMEN

The PIWI-interacting RNA (piRNA) pathway is essential for retrotransposon silencing. In piRNA-deficient mice, L1-overexpressing male germ cells exhibit excessive DNA damage and meiotic defects. It remains unknown whether L1 expression simply highlights piRNA deficiency or actually drives the germ-cell demise. Specifically, the sheer abundance of genomic L1 copies prevents reliable quantification of new insertions. Here, we developed a codon-optimized L1 transgene that is controlled by an endogenous mouse L1 promoter. Importantly, DNA methylation dynamics of a single-copy transgene were indistinguishable from those of endogenous L1s. Analysis of Mov10l1-/- testes established that de novo methylation of the L1 transgene required the intact piRNA pathway. Consistent with loss of DNA methylation and programmed reduction of H3K9me2 at meiotic onset, the transgene showed 1,400-fold increase in RNA expression and consequently 70-fold increase in retrotransposition in postnatal day 14 Mov10l1-/- germ cells compared with the wild-type. Analysis of adult Mov10l1-/- germ-cell fractions indicated a stage-specific increase of retrotransposition in the early meiotic prophase. However, extrapolation of the transgene data to endogenous L1s suggests that it is unlikely insertional mutagenesis alone accounts for the Mov10l1-/- phenotype. Indeed, pharmacological inhibition of reverse transcription did not rescue the meiotic defect. Cumulatively, these results establish the occurrence of productive L1 mobilization in the absence of an intact piRNA pathway but leave open the possibility of processes preceding L1 integration in triggering meiotic checkpoints and germ-cell death. Additionally, our data suggest that many heritable L1 insertions originate from individuals with partially compromised piRNA defense.


Asunto(s)
Meiosis , ARN Interferente Pequeño/metabolismo , Retroelementos , Transgenes , Regiones no Traducidas 5' , Animales , Codón , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Masculino , Metilación , Ratones , Ratones Transgénicos , Sistemas de Lectura Abierta , Fenotipo , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Espermatocitos/metabolismo , Espermatogénesis , Testículo/metabolismo
8.
Development ; 143(9): 1502-11, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26965368

RESUMEN

Retinoic acid (RA) signaling is crucial for spermatogonial differentiation, which is a key step for spermatogenesis. We explored the mechanisms underlying spermatogonial differentiation by targeting expression of a dominant-negative mutant of retinoic acid receptor α (RARα) specifically to the germ cells of transgenic mice to subvert the activity of endogenous receptors. Here we show that: (1) inhibition of retinoid signaling in germ cells completely blocked spermatogonial differentiation identical to vitamin A-deficient (VAD) mice; (2) the blockage of spermatogonial differentiation by impaired retinoid signaling resulted from an arrest of entry of the undifferentiated spermatogonia into S phase; and (3) retinoid signaling regulated spermatogonial differentiation through controlling expression of its direct target genes, including replication-dependent core histone genes. Taken together, our results demonstrate that the action of retinoid signaling on spermatogonial differentiation in vivo is direct through the spermatogonia itself, and provide the first evidence that this is mediated by regulation of expression of replication-dependent core histone genes.


Asunto(s)
Diferenciación Celular/genética , Receptor alfa de Ácido Retinoico/genética , Puntos de Control de la Fase S del Ciclo Celular/genética , Transducción de Señal/genética , Espermatogénesis/genética , Espermatogonias/citología , Animales , Histonas/genética , Masculino , Ratones , Ratones Transgénicos , Receptor alfa de Ácido Retinoico/metabolismo , Espermatogonias/metabolismo , Testículo/metabolismo , Tretinoina/metabolismo , Deficiencia de Vitamina A
9.
Biol Reprod ; 100(2): 547-560, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30247516

RESUMEN

Despite the essential role of the active metabolite of vitamin A, all-trans retinoic acid (atRA) in spermatogenesis, the enzymes, and cellular populations responsible for its synthesis in the postnatal testis remain largely unknown. The aldehyde dehydrogenase 1A (ALDH1A) family of enzymes residing within Sertoli cells is responsible for the synthesis of atRA, driving the first round of spermatogenesis. Those studies also revealed that the atRA required to drive subsequent rounds of spermatogenesis is possibly derived from the ALDH1A enzymes residing within the meiotic and post-meiotic germ cells. Three ALDH1A isozymes (ALDH1A1, ALDH1A2, and ALDH1A3) are present in the testis. Although, ALDH1A1 is expressed in adult Sertoli cells and is suggested to contribute to the atRA required for the pre-meiotic transitions, ALDH1A2 is proposed to be the essential isomer involved in testicular atRA biosynthesis. In this report, we first examine the requirement for ALDH1A2 via the generation and analysis of a conditional Aldh1a2 germ cell knockout and a tamoxifen-induced Aldh1a2 knockout model. We then utilized the pan-ALDH1A inhibitor (WIN 18446) to test the collective contribution of the ALDH1A enzymes to atRA biosynthesis following the first round of spermatogenesis. Collectively, our data provide the first in vivo evidence demonstrating that animals severely deficient in ALDH1A2 postnatally proceed normally through spermatogenesis. Our studies with a pan-ALDH1A inhibitor (WIN 18446) also suggest that an alternative source of atRA biosynthesis independent of the ALDH1A enzymes becomes available to maintain atRA levels for several spermatogenic cycles following an initial atRA injection.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/metabolismo , Testículo/metabolismo , Tretinoina/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Animales , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genotipo , Isoenzimas , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Oxidación-Reducción , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo , Tamoxifeno/farmacología
10.
Dev Biol ; 432(2): 229-236, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29037932

RESUMEN

The onset of spermatogenesis occurs in response to retinoic acid (RA), the active metabolite of vitamin A. However, whether RA plays any role during establishment of the spermatogonial stem cell (SSC) pool is unknown. Because designation of the SSC population and the onset of RA signaling in the testis that induces differentiation have similar timing, this study asked whether RA influenced SSC establishment. Whole mount immunofluorescence and flow cytometric analysis using the Id4-eGfp transgenic reporter mouse line revealed an enrichment for ID4-EGFP+ cells within the testis following inhibition of RA synthesis by WIN 18,446 treatment. Transplantation analyses confirmed a significant increase in the number of SSCs in testes from RA-deficient animals. Conversely, no difference in the ID4-EGFP+ population or change in SSC number were detected following exposure to an excess of RA. Collectively, reduced RA altered the number of SSCs present in the neonatal testis but precocious RA exposure in the neonatal testis did not, suggesting that RA deficiency causes a greater proportion of progenitor undifferentiated spermatogonia to retain their SSC state past the age when the pool is thought to be determined.


Asunto(s)
Espermatogénesis/fisiología , Tretinoina/metabolismo , Células Madre Germinales Adultas/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos , Espermatogénesis/genética , Espermatogonias/citología , Testículo/metabolismo
11.
Biol Reprod ; 99(1): 87-100, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29462262

RESUMEN

The complex morphology of the Sertoli cells and their interactions with germ cells has been a focus of investigators since they were first described by Enrico Sertoli. In the past 50 years, information on Sertoli cells has transcended morphology alone to become increasingly more focused on molecular questions. The goal of investigators has been to understand the role of the Sertoli cells in spermatogenesis and to apply that information to problems relating to male fertility. Sertoli cells are unique in that they are a nondividing cell population that is active for the reproductive lifetime of the animal and cyclically change morphology and gene expression. The numerous and distinctive junctional complexes and membrane specializations made by Sertoli cells provide a scaffold and environment for germ cell development. The increased focus of investigators on the molecular components and putative functions of testicular cells has resulted primarily from procedures that isolate specific cell types from the testicular milieu. Products of Sertoli cells that influence germ cell development and vice versa have been characterized from cultured cells and from the application of transgenic technologies. Germ cell transplantation has shown that the Sertoli cells respond to cues from germ cells with regard to developmental timing and has furthered a focus on spermatogenic stem cells and the stem cell niche. Very basic and universal features of spermatogenesis such as the cycle of the seminiferous epithelium and the spermatogenic wave are initiated by Sertoli cells and maintained by Sertoli-germ cell cooperation.


Asunto(s)
Fertilidad/fisiología , Células Germinativas/citología , Células de Sertoli/citología , Espermatogénesis/fisiología , Testículo/citología , Animales , Humanos , Masculino , Epitelio Seminífero/citología
12.
Biol Reprod ; 98(5): 722-738, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29408990

RESUMEN

Spermatogenesis in mammals occurs in a very highly organized manner within the seminiferous epithelium regulated by different cell types in the testis. Testosterone produced by Leydig cells regulates blood-testis barrier formation, meiosis, spermiogenesis, and spermiation. However, it is unknown whether Leydig cell function changes with the different stages of the seminiferous epithelium. This study utilized the WIN 18,446 and retinoic acid (RA) treatment regime combined with the RiboTag mouse methodology to synchronize male germ cell development and allow for the in vivo mapping of the Leydig cell translatome across the different stages of one cycle of the seminiferous epithelium. Using microarrays analysis, we identified 11 Leydig cell-enriched genes that were expressed in stage-specific manner such as the glucocorticoid synthesis and transport genes, Cyp21a1 and Serpina6. In addition, there were nine Leydig cell transcripts that change their association with polysomes in correlation with the different stages of the spermatogenic cycle including Egr1. Interestingly, the signal intensity of EGR1 and CYP21 varied among Leydig cells in the adult asynchronous testis. However, testosterone levels across the different stages of germ cell development did not cycle. These data show, for the first time, that Leydig cell gene expression changes in a stage-specific manner during the cycle of the seminiferous epithelium and indicate that a heterogeneous Leydig cell population exists in the adult mouse testis.


Asunto(s)
Células Intersticiales del Testículo/metabolismo , Polirribosomas/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Barrera Hematotesticular , Expresión Génica , Células Intersticiales del Testículo/citología , Masculino , Ratones , Epitelio Seminífero/citología , Epitelio Seminífero/metabolismo , Esteroide 21-Hidroxilasa/genética , Esteroide 21-Hidroxilasa/metabolismo , Testículo/citología , Transcortina/genética , Transcortina/metabolismo
13.
Nature ; 476(7358): 101-4, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21775990

RESUMEN

Sex in mammals is determined in the fetal gonad by the presence or absence of the Y chromosome gene Sry, which controls whether bipotential precursor cells differentiate into testicular Sertoli cells or ovarian granulosa cells. This pivotal decision in a single gonadal cell type ultimately controls sexual differentiation throughout the body. Sex determination can be viewed as a battle for primacy in the fetal gonad between a male regulatory gene network in which Sry activates Sox9 and a female network involving WNT/ß-catenin signalling. In females the primary sex-determining decision is not final: loss of the FOXL2 transcription factor in adult granulosa cells can reprogram granulosa cells into Sertoli cells. Here we show that sexual fate is also surprisingly labile in the testis: loss of the DMRT1 transcription factor in mouse Sertoli cells, even in adults, activates Foxl2 and reprograms Sertoli cells into granulosa cells. In this environment, theca cells form, oestrogen is produced and germ cells appear feminized. Thus Dmrt1 is essential to maintain mammalian testis determination, and competing regulatory networks maintain gonadal sex long after the fetal choice between male and female. Dmrt1 and Foxl2 are conserved throughout vertebrates and Dmrt1-related sexual regulators are conserved throughout metazoans. Antagonism between Dmrt1 and Foxl2 for control of gonadal sex may therefore extend beyond mammals. Reprogramming due to loss of Dmrt1 also may help explain the aetiology of human syndromes linked to DMRT1, including disorders of sexual differentiation and testicular cancer.


Asunto(s)
Caracteres Sexuales , Procesos de Determinación del Sexo/fisiología , Diferenciación Sexual/fisiología , Testículo/metabolismo , Factores de Transcripción/metabolismo , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Transdiferenciación Celular , Femenino , Feminización/genética , Proteína Forkhead Box L2 , Factores de Transcripción Forkhead/biosíntesis , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Masculino , Ratones , Modelos Biológicos , Ovario/citología , Ovario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción SOX9/metabolismo , Células de Sertoli/citología , Células de Sertoli/metabolismo , Procesos de Determinación del Sexo/genética , Diferenciación Sexual/genética , Testículo/citología , Células Tecales/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
14.
PLoS Genet ; 10(8): e1004541, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25102060

RESUMEN

In all sexually reproducing organisms, cells of the germ line must transition from mitosis to meiosis. In mice, retinoic acid (RA), the extrinsic signal for meiotic initiation, activates transcription of Stra8, which is required for meiotic DNA replication and the subsequent processes of meiotic prophase. Here we report that RA also activates transcription of Rec8, which encodes a component of the cohesin complex that accumulates during meiotic S phase, and which is essential for chromosome synapsis and segregation. This RA induction of Rec8 occurs in parallel with the induction of Stra8, and independently of Stra8 function, and it is conserved between the sexes. Further, RA induction of Rec8, like that of Stra8, requires the germ-cell-intrinsic competence factor Dazl. Our findings strengthen the importance of RA and Dazl in the meiotic transition, provide important details about the Stra8 pathway, and open avenues to investigate early meiosis through analysis of Rec8 induction and function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Meiosis/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas de Unión al ARN/genética , Tretinoina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular , Replicación del ADN/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Germinativas/crecimiento & desarrollo , Masculino , Ratones , Mitosis/genética , Proteínas Nucleares/biosíntesis , Ovario/efectos de los fármacos , Ovario/crecimiento & desarrollo , Fosfoproteínas/biosíntesis , Proteínas de Unión al ARN/biosíntesis , Transducción de Señal/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/crecimiento & desarrollo , Transcripción Genética/efectos de los fármacos , Tretinoina/administración & dosificación
15.
J Biol Chem ; 290(45): 27239-27247, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26391396

RESUMEN

Regeneration of the visual chromophore, 11-cis-retinal, is a crucial step in the visual cycle required to sustain vision. This cycle consists of sequential biochemical reactions that occur in photoreceptor cells and the retinal pigmented epithelium (RPE). Oxidation of 11-cis-retinol to 11-cis-retinal is accomplished by a family of enzymes termed 11-cis-retinol dehydrogenases, including RDH5 and RDH11. Double deletion of Rdh5 and Rdh11 does not limit the production of 11-cis-retinal in mice. Here we describe a third retinol dehydrogenase in the RPE, RDH10, which can produce 11-cis-retinal. Mice with a conditional knock-out of Rdh10 in RPE cells (Rdh10 cKO) displayed delayed 11-cis-retinal regeneration and dark adaption after bright light illumination. Retinal function measured by electroretinogram after light exposure was also delayed in Rdh10 cKO mice as compared with controls. Double deletion of Rdh5 and Rdh10 (cDKO) in mice caused elevated 11/13-cis-retinyl ester content also seen in Rdh5(-/-)Rdh11(-/-) mice as compared with Rdh5(-/-) mice. Normal retinal morphology was observed in 6-month-old Rdh10 cKO and cDKO mice, suggesting that loss of Rdh10 in the RPE does not negatively affect the health of the retina. Compensatory expression of other retinol dehydrogenases was observed in both Rdh5(-/-) and Rdh10 cKO mice. These results indicate that RDH10 acts in cooperation with other RDH isoforms to produce the 11-cis-retinal chromophore needed for vision.


Asunto(s)
Oxidorreductasas de Alcohol/deficiencia , Adaptación a la Oscuridad/fisiología , Epitelio Pigmentado de la Retina/enzimología , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Femenino , Expresión Génica , Cinética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidorreductasas/deficiencia , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Degeneración Retiniana/enzimología , Degeneración Retiniana/etiología , Epitelio Pigmentado de la Retina/anatomía & histología , Epitelio Pigmentado de la Retina/fisiología , Retinaldehído/biosíntesis , Retinoides/metabolismo , Células Sf9 , Spodoptera
16.
Biol Reprod ; 95(4): 81, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27488029

RESUMEN

Retinoic acid (RA), the active metabolite of vitamin A, is known to be required for the differentiation of spermatogonia. The first round of spermatogenesis initiates in response to RA and occurs in patches along the length of the seminiferous tubule. However, very little is known about the individual differentiating spermatogonial populations and their progression through the cell cycle due to the heterogeneous nature of the onset of spermatogenesis. In this study, we utilized WIN 18,446 and RA as tools to generate testes enriched with different populations of spermatogonia to further investigate 1) the undifferentiated to differentiating spermatogonial transition, 2) the progression of the differentiating spermatogonia through the cell cycle, and 3) Sertoli cell number in response to altered RA levels. WIN 18,446/RA-treated neonatal mice were used to determine when synchronous S phases occurred in the differentiating spermatogonial population following treatment. Five differentiating spermatogonial S phase windows were identified between spermatogonial differentiation and formation of preleptotene spermatocytes. In addition, a slight increase in Sertoli cell number was observed following RA treatment, possibly implicating a role for RA in Sertoli cell cycle progression. This study has enhanced our understanding of the spermatogonial populations present in the neonatal testis during the onset of spermatogenesis by mapping the cell cycle kinetics of both the undifferentiated and the differentiating spermatogonial populations and identifying the precise timing of when specific individual differentiating spermatogonial populations are enriched within the testis following synchrony, thus providing an essential tool for further study of the differentiating spermatogonia.


Asunto(s)
Espermatogénesis/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Tretinoina/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Diaminas/farmacología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Microscopía Fluorescente , Túbulos Seminíferos/metabolismo , Células de Sertoli/citología , Células de Sertoli/efectos de los fármacos , Transducción de Señal , Espermatogénesis/fisiología , Espermatogonias/citología , Espermatogonias/fisiología , Testículo/citología , Testículo/efectos de los fármacos , Testículo/fisiología , Tretinoina/fisiología
17.
Biol Reprod ; 94(1): 12, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26632609

RESUMEN

Perturbations in the vitamin A metabolism pathway could be a significant cause of male infertility, as well as a target toward the development of a male contraceptive, necessitating the need for a better understanding of how testicular retinoic acid (RA) concentrations are regulated. Quantitative analyses have recently demonstrated that RA is present in a pulsatile manner along testis tubules. However, it is unclear if the aldehyde dehydrogenase (ALDH) enzymes, which are responsible for RA synthesis, contribute to the regulation of these RA concentration gradients. Previous studies have alluded to fluctuations in ALDH enzymes across the spermatogenic cycle, but these inferences have been based primarily on qualitative transcript localization experiments. Here, we show via various quantitative methods that the three well-known ALDH enzymes (ALDH1A1, ALDH1A2, and ALDH1A3), and an ALDH enzyme previously unreported in the murine testis (ALDH8A1), are not expressed in a stage-specific manner in the adult testis, but do fluctuate throughout juvenile development in perfect agreement with the first appearance of each advancing germ cell type. We also show, via treatments with a known ALDH inhibitor, that lowered testicular RA levels result in an increase in blood-testis barrier permeability, meiotic recombination, and meiotic defects. Taken together, these data further our understanding of the complex regulatory actions of RA on various spermatogenic events and, in contrast with previous studies, also suggest that the ALDH enzymes are not responsible for regulating the recently measured RA pulse.


Asunto(s)
Aldehído Deshidrogenasa/biosíntesis , Espermatogénesis/genética , Aldehído Deshidrogenasa/antagonistas & inhibidores , Aldehído Deshidrogenasa/genética , Animales , Biotina/metabolismo , Barrera Hematotesticular/efectos de los fármacos , Emparejamiento Cromosómico/efectos de los fármacos , Diaminas/farmacología , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica/genética , Isoenzimas/metabolismo , Masculino , Meiosis/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Tretinoina/metabolismo
18.
Proc Natl Acad Sci U S A ; 110(2): 543-8, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23267101

RESUMEN

Retinoic acid (RA), an active vitamin A derivative, is essential for mammalian spermatogenesis. Genetic studies have revealed that oxidation of vitamin A to retinal by retinol dehydrogenase 10 (RDH10) is critical for embryonic RA biosynthesis. However, physiological roles of RDH10 in postnatal RA synthesis remain unclear, given that Rdh10 loss-of-function mutations lead to early embryonic lethality. We conducted in vivo genetic studies of Rdh10 in postnatal mouse testes and found that an RDH10 deficiency in Sertoli cells, but not in germ cells, results in a mild germ cell depletion phenotype. A deficiency of RDH10 in both Sertoli and germ cells in juvenile mice results in a blockage of spermatogonial differentiation, similar to that seen in vitamin A-deficient animals. This defect in spermatogenesis arises from a complete deficiency in juvenile testicular RA synthesis and can be rescued by retinoid administration. Thus, in juvenile mice, the primary, but not exclusive, source of RA in the testes is Sertoli cells. In contrast, adult Rdh10-deficient mice exhibit phenotypically normal spermatogenesis, indicating that during development a change occurs in either the cellular source of RA or the retinaldehyde dehydrogenase involved in RA synthesis.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Espermatogénesis/fisiología , Oxidorreductasas de Alcohol/deficiencia , Animales , Cartilla de ADN/genética , Galactósidos , Técnicas Histológicas , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Indoles , Masculino , Ratones , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células de Sertoli/metabolismo , Testículo/metabolismo , Tretinoina/metabolismo , Vitamina A/metabolismo
19.
J Lipid Res ; 56(2): 342-57, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25502770

RESUMEN

Retinoic acid (RA), the active metabolite of vitamin A, is required for spermatogenesis and many other biological processes. RA formation requires irreversible oxidation of retinal to RA by aldehyde dehydrogenase enzymes of the 1A family (ALDH1A). While ALDH1A1, ALDH1A2, and ALDH1A3 all form RA, the expression pattern and relative contribution of these enzymes to RA formation in the testis is unknown. In this study, novel methods to measure ALDH1A protein levels and intrinsic RA formation were used to accurately predict RA formation velocities in individual human testis samples and an association between RA formation and intratesticular RA concentrations was observed. The distinct localization of ALDH1A in the testis suggests a specific role for each enzyme in controlling RA formation. ALDH1A1 was found in Sertoli cells, while only ALDH1A2 was found in spermatogonia, spermatids, and spermatocytes. In the absence of cellular retinol binding protein (CRBP)1, ALDH1A1 was predicted to be the main contributor to intratesticular RA formation, but when CRBP1 was present, ALDH1A2 was predicted to be equally important in RA formation as ALDH1A1. This study provides a comprehensive novel methodology to evaluate RA homeostasis in human tissues and provides insight to how the individual ALDH1A enzymes mediate RA concentrations in specific cell types.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Testículo/metabolismo , Anciano , Anciano de 80 o más Años , Aldehído Deshidrogenasa/genética , Familia de Aldehído Deshidrogenasa 1 , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Cromatografía Liquida , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Espectrometría de Masas en Tándem , Tretinoina/metabolismo
20.
Biol Reprod ; 92(2): 37, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25519186

RESUMEN

The asynchronous cyclic nature of spermatogenesis is essential for continual sperm production and is one of the hallmarks of mammalian male fertility. While various mRNA and protein localization studies have indirectly implicated changing retinoid levels along testis tubules, no quantitative evidence for these changes across the cycle of the seminiferous epithelium currently exists. This study utilized a unique mouse model of induced synchronous spermatogenesis, localization of the retinoid-signaling marker STRA8, and sensitive quantification of retinoic acid concentrations to determine whether there are fluctuations in retinoid levels at each of the individual stages of germ cell differentiation and maturation to sperm. These data show that processive pulses of retinoic acid are generated during spermatogonial differentiation and are the likely trigger for cyclic spermatogenesis and allow us, for the first time, to understand how the cycle of the seminiferous epithelium is generated and maintained. In addition, this study represents the first direct quantification of a retinoid gradient controlling cellular differentiation in a postnatal tissue.


Asunto(s)
Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos , Tretinoina/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Masculino , Ratones , Receptores de Ácido Retinoico/metabolismo , Testículo/metabolismo , Tretinoina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA