Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Mol Cell ; 83(14): 2478-2492.e8, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37369201

RESUMEN

The RNA-binding protein TRIM71/LIN-41 is a phylogenetically conserved developmental regulator that functions in mammalian stem cell reprogramming, brain development, and cancer. TRIM71 recognizes target mRNAs through hairpin motifs and silences them through molecular mechanisms that await identification. Here, we uncover that TRIM71 represses its targets through RNA-supported interaction with TNRC6/GW182, a core component of the miRNA-induced silencing complex (miRISC). We demonstrate that AGO2, TRIM71, and UPF1 each recruit TNRC6 to specific sets of transcripts to silence them. As cellular TNRC6 levels are limiting, competition occurs among the silencing pathways, such that the loss of AGO proteins or of AGO binding to TNRC6 enhances the activities of the other pathways. We conclude that a miRNA-like silencing activity is shared among different mRNA silencing pathways and that the use of TNRC6 as a central hub provides a means to integrate their activities.


Asunto(s)
Proteínas Argonautas , MicroARNs , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Unión Proteica , Células Madre/metabolismo , Mamíferos/metabolismo
2.
Mol Cell ; 81(11): 2388-2402.e8, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33852894

RESUMEN

Small RNA pathways defend the germlines of animals against selfish genetic elements, yet pathway activities need to be contained to prevent silencing of self genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian dipeptidyl peptidase (DPP) 8/9, processes the unusually proline-rich N termini of WAGO-1 and WAGO-3 Argonaute (Ago) proteins. Without DPF-3 activity, these WAGO proteins lose their proper complement of 22G RNAs. Desilencing of repeat-containing and transposon-derived transcripts, DNA damage, and acute sterility ensue. These phenotypes are recapitulated when WAGO-1 and WAGO-3 are rendered resistant to DPF-3-mediated processing, identifying them as critical substrates of DPF-3. We conclude that N-terminal processing of Ago proteins regulates their activity and promotes silencing of selfish genetic elements by ensuring Ago association with appropriate small RNAs.


Asunto(s)
Proteínas Argonautas/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Procesamiento Proteico-Postraduccional , ARN de Helminto/genética , Animales , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Fertilidad/genética , Proteolisis , ARN de Helminto/antagonistas & inhibidores , ARN de Helminto/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Especificidad por Sustrato
3.
EMBO J ; 42(4): e111895, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36688410

RESUMEN

C. elegans develops through four larval stages that are rhythmically terminated by molts, that is, the synthesis and shedding of a cuticular exoskeleton. Each larval cycle involves rhythmic accumulation of thousands of transcripts, which we show here relies on rhythmic transcription. To uncover the responsible gene regulatory networks (GRNs), we screened for transcription factors that promote progression through the larval stages and identified GRH-1, BLMP-1, NHR-23, NHR-25, MYRF-1, and BED-3. We further characterize GRH-1, a Grainyhead/LSF transcription factor, whose orthologues in other animals are key epithelial cell-fate regulators. We find that GRH-1 depletion extends molt durations, impairs cuticle integrity and shedding, and causes larval death. GRH-1 is required for, and accumulates prior to, each molt, and preferentially binds to the promoters of genes expressed during this time window. Binding to the promoters of additional genes identified in our screen furthermore suggests that we have identified components of a core molting-clock GRN. Since the mammalian orthologues of GRH-1, BLMP-1 and NHR-23, have been implicated in rhythmic homeostatic skin regeneration in mouse, the mechanisms underlying rhythmic C. elegans molting may apply beyond nematodes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Ratones , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Muda/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética
4.
Genes Dev ; 33(17-18): 1221-1235, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371437

RESUMEN

TRIM71/LIN-41, a phylogenetically conserved regulator of development, controls stem cell fates. Mammalian TRIM71 exhibits both RNA-binding and protein ubiquitylation activities, but the functional contribution of either activity and relevant primary targets remain poorly understood. Here, we demonstrate that TRIM71 shapes the transcriptome of mouse embryonic stem cells (mESCs) predominantly through its RNA-binding activity. We reveal that TRIM71 binds targets through 3' untranslated region (UTR) hairpin motifs and that it acts predominantly by target degradation. TRIM71 mutations implicated in etiogenesis of human congenital hydrocephalus impair target silencing. We identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1 (Muscleblind-like protein 1). MBNL1 promotes cell differentiation through regulation of alternative splicing, and we demonstrate that TRIM71 promotes embryonic splicing patterns through MBNL1 repression. Hence, repression of MBNL1-dependent alternative splicing may contribute to TRIM71's function in regulating stem cell fates.


Asunto(s)
Empalme Alternativo/genética , Regulación de la Expresión Génica/genética , Proteínas de Unión al ARN/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular Tumoral , Células Madre Embrionarias , Humanos , Ratones , Ratones Noqueados , Mutación , Motivos de Nucleótidos , Unión Proteica , Dominios Proteicos/genética , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo
5.
Nucleic Acids Res ; 52(9): 5336-5355, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38381904

RESUMEN

Temporally and spatially controlled accumulation underlies the functions of microRNAs (miRNAs) in various developmental processes. In Caenorhabditis elegans, this is exemplified by the temporal patterning miRNAs lin-4 and let-7, but for most miRNAs, developmental expression patterns remain poorly resolved. Indeed, experimentally observed long half-lives may constrain possible dynamics. Here, we profile miRNA expression throughout C. elegans postembryonic development at high temporal resolution, which identifies dynamically expressed miRNAs. We use mathematical models to explore the underlying mechanisms. For let-7, we can explain, and experimentally confirm, a striking stepwise accumulation pattern through a combination of rhythmic transcription and stage-specific regulation of precursor processing by the RNA-binding protein LIN-28. By contrast, the dynamics of several other miRNAs cannot be explained by regulation of production rates alone. Specifically, we show that a combination of oscillatory transcription and rhythmic decay drive rhythmic accumulation of miR-235, orthologous to miR-92 in other animals. We demonstrate that decay of miR-235 and additional miRNAs depends on EBAX-1, previously implicated in target-directed miRNA degradation (TDMD). Taken together, our results provide insight into dynamic miRNA decay and establish a resource to studying both the developmental functions of, and the regulatory mechanisms acting on, miRNAs.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Regulación del Desarrollo de la Expresión Génica , MicroARNs , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Proteínas Represoras , Estabilidad del ARN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
6.
Mol Cell ; 65(3): 476-489.e4, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28111013

RESUMEN

The RNA-binding protein (RBP) LIN41, also known as LIN-41 or TRIM71, is a key regulator of animal development, but its physiological targets and molecular mechanism of action are largely elusive. Here we find that this RBP has two distinct mRNA-silencing activities. Using genome-wide ribosome profiling, RNA immunoprecipitation, and in vitro-binding experiments, we identify four mRNAs, each encoding a transcription factor or cofactor, as direct physiological targets of C. elegans LIN41. LIN41 silences three of these targets through their 3' UTRs, but it achieves isoform-specific silencing of one target, lin-29A, through its unique 5' UTR. Whereas the 3' UTR targets mab-10, mab-3, and dmd-3 undergo transcript degradation, lin-29A experiences translational repression. Through binding site transplantation experiments, we demonstrate that it is the location of the LIN41-binding site that specifies the silencing mechanism. Such position-dependent dual activity may, when studied more systematically, emerge as a feature shared by other RBPs.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Sitios de Unión , Interferencia de ARN , Estabilidad del ARN , ARN de Helminto/química , ARN de Helminto/metabolismo
7.
Genes Dev ; 31(18): 1870-1879, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29021241

RESUMEN

Transcription termination determines the ends of transcriptional units and thereby ensures the integrity of the transcriptome and faithful gene regulation. Studies in yeast and human cells have identified the exoribonuclease XRN2 as a key termination factor for protein-coding genes. Here we performed a genome-wide investigation of RNA polymerase II (Pol II) transcription termination in XRN2-deficient Caenorhabditis elegans and observed two distinct modes of termination. Although a subset of genes requires XRN2, termination of other genes appears both independent of, and refractory to, XRN2. XRN2 independence is not merely a consequence of failure to recruit XRN2, since XRN2 is present on-and promotes Pol II accumulation near the polyadenylation sites of-both gene classes. Unexpectedly, promoters instruct the choice of termination mode, but XRN2-independent termination additionally requires a compatible region downstream from the 3' end cleavage site. Hence, different termination mechanisms may work with different configurations of Pol II complexes dictated by promoters.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Exorribonucleasas/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Terminación de la Transcripción Genética/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Exorribonucleasas/genética , Interferencia de ARN , ARN Polimerasa II/genética , ARN Mensajero/genética
8.
Cell ; 134(4): 560-2, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18724926

RESUMEN

Two recent studies published in Nature (Baek et al. 2008; Selbach et al., 2008) analyze changes in the proteome in response to individual microRNAs (miRNAs). This approach is a powerful means to identify miRNA targets and to quantify the contribution of translational repression to posttranscriptional gene silencing by miRNAs.


Asunto(s)
MicroARNs/genética , Proteínas/metabolismo , Proteómica/métodos , Animales , Biología Computacional , Células HeLa , Humanos
9.
Mol Cell ; 53(2): 351-60, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24462208

RESUMEN

XRN2 is an essential eukaryotic exoribonuclease that processes and degrades various substrates. Here we identify the previously uncharacterized protein R05D11.6/PAXT-1 as a subunit of an XRN2 complex in C. elegans. Targeted paxt-1 inactivation through TALEN-mediated genome editing reduces XRN2 levels, decreases miRNA turnover activity, and results in worm death, which can be averted by overexpressing xrn-2. Hence, stabilization of XRN2 is a major function of PAXT-1. A truncated PAXT-1 protein retaining a predicted domain of unknown function (DUF3469) suffices to restore viability to paxt-1 mutant animals, elevates XRN2 levels, and binds to XRN2. This domain occurs in additional metazoan proteins and mediates interaction of human CDKN2AIP/CARF and NKRF/NRF with XRN2. Thus, we have identified a bona fide XRN2-binding domain (XTBD) that can link different proteins, and possibly functionalities, to XRN2.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Sitios de Unión , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Secuencia Conservada , Proteínas de Unión al ADN , Exorribonucleasas/metabolismo , Técnicas de Inactivación de Genes , Humanos , Estructura Terciaria de Proteína , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
10.
Mol Cell ; 53(3): 380-92, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24440504

RESUMEN

Oscillations are a key to achieving dynamic behavior and thus occur in biological systems as diverse as the beating heart, defecating worms, and nascent somites. Here we report pervasive, large-amplitude, and phase-locked oscillations of gene expression in developing C. elegans larvae, caused by periodic transcription. Nearly one fifth of detectably expressed transcripts oscillate with an 8 hr period, and hundreds change >10-fold. Oscillations are important for molting but occur in all phases, implying additional functions. Ribosome profiling reveals that periodic mRNA accumulation causes rhythmic translation, potentially facilitating transient protein accumulation as well as coordinated production of stable, complex structures such as the cuticle. Finally, large-amplitude oscillations in RNA sampled from whole worms indicate robust synchronization of gene expression programs across cells and tissues, suggesting that these oscillations will be a powerful new model to study coordinated gene expression in an animal.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Modelos Genéticos , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Relojes Circadianos , Perfilación de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Biosíntesis de Proteínas/fisiología , ARN de Helminto/metabolismo , Factores de Tiempo , Transcripción Genética
11.
Mol Syst Biol ; 16(7): e9498, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32687264

RESUMEN

Gene expression oscillators can structure biological events temporally and spatially. Different biological functions benefit from distinct oscillator properties. Thus, finite developmental processes rely on oscillators that start and stop at specific times, a poorly understood behavior. Here, we have characterized a massive gene expression oscillator comprising > 3,700 genes in Caenorhabditis elegans larvae. We report that oscillations initiate in embryos, arrest transiently after hatching and in response to perturbation, and cease in adults. Experimental observation of the transitions between oscillatory and non-oscillatory states at high temporal resolution reveals an oscillator operating near a Saddle Node on Invariant Cycle (SNIC) bifurcation. These findings constrain the architecture and mathematical models that can represent this oscillator. They also reveal that oscillator arrests occur reproducibly in a specific phase. Since we find oscillations to be coupled to developmental processes, including molting, this characteristic of SNIC bifurcations endows the oscillator with the potential to halt larval development at defined intervals, and thereby execute a developmental checkpoint function.


Asunto(s)
Relojes Biológicos/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Larva/metabolismo , Muda/genética , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Gastrulación/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Ontología de Genes , Genes Reporteros , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Modelos Teóricos , Especificidad de Órganos , RNA-Seq , Análisis Espacio-Temporal , Factores de Tiempo
12.
Mol Cell ; 50(2): 281-7, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23541767

RESUMEN

In metazoans, microRNAs play a critical role in the posttranscriptional regulation of genes required for cell proliferation and differentiation. MicroRNAs themselves are regulated by a multitude of mechanisms influencing their transcription and posttranscriptional maturation. However, there is only sparse knowledge on pathways regulating the mature, functional form of microRNA. Here, we uncover the implication of the decapping scavenger protein DCS-1 in the control of microRNA turnover. In Caenorhabditis elegans, mutations in dcs-1 increase the levels of functional microRNAs. We demonstrate that DCS-1 interacts with the exonuclease XRN-1 to promote microRNA degradation in an independent manner from its known decapping scavenger activity, establishing two molecular functions for DCS-1. Our findings thus indicate that DCS-1 is part of a degradation complex that performs microRNA turnover in animals.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , MicroARNs/metabolismo , N-Glicosil Hidrolasas/metabolismo , ARN de Helminto/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Exorribonucleasas/metabolismo , Expresión Génica , Mutación , N-Glicosil Hidrolasas/genética , Pirofosfatasas , Interferencia de ARN , Estabilidad del ARN , Complejo Silenciador Inducido por ARN/metabolismo
13.
Genes Dev ; 27(6): 581-9, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23512656

RESUMEN

lin-41 (lineage variant 41)/TRIM71 (tripartite motif 71) is well known for being a conserved target of the let-7 (lethal 7) microRNA (miRNA), a regulatory relationship found in animals evolutionarily as distant as Caenorhabditis elegans and humans. It has thus been studied extensively as a model for miRNA-mediated gene silencing. In contrast, the developmental and molecular functions of LIN41 have historically received less attention. However, LIN41 proteins are now emerging as important regulators of cell proliferation and differentiation in stem and progenitor cells. Moreover, LIN41's functions appear to involve two distinct molecular activities; namely, protein ubiquitylation and post-transcriptional silencing of mRNAs. Thus, LIN41 is ready for a scientific life of its own.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Proliferación Celular , Silenciador del Gen , Humanos , MicroARNs/genética , ARN Mensajero/metabolismo , Células Madre , Ubiquitinación
14.
Nucleic Acids Res ; 46(7): 3259-3269, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29897601

RESUMEN

MicroRNAs often occur in families whose members share an identical 5' terminal 'seed' sequence. The seed is a major determinant of miRNA activity, and family members are thought to act redundantly on target mRNAs with perfect seed matches, i.e. sequences complementary to the seed. However, recently sequences outside the seed were reported to promote silencing by individual miRNA family members. Here, we examine this concept and the importance of miRNA specificity for the robustness of developmental gene control. Using the let-7 miRNA family in Caenorhabditis elegans, we find that seed match imperfections can increase specificity by requiring extensive pairing outside the miRNA seed region for efficient silencing and that such specificity is needed for faithful worm development. In addition, for some target site architectures, elevated miRNA levels can compensate for a lack of complementarity outside the seed. Thus, some target sites require higher miRNA concentration for silencing than others, contrasting with a traditional binary distinction between functional and non-functional sites. We conclude that changing miRNA concentrations can alter cellular miRNA target repertoires. This diversifies possible biological outcomes of miRNA-mediated gene regulation and stresses the importance of target validation under physiological conditions to understand miRNA functions in vivo.


Asunto(s)
Caenorhabditis elegans/genética , MicroARNs/genética , ARN Mensajero/genética , Regiones no Traducidas 5'/genética , Animales , Emparejamiento Base , Sitios de Unión/genética , Caenorhabditis elegans/crecimiento & desarrollo , Regulación de la Expresión Génica/genética
15.
Nucleic Acids Res ; 45(6): 2960-2972, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28126919

RESUMEN

Ribosome profiling via high-throughput sequencing (ribo-seq) is a promising new technique for characterizing the occupancy of ribosomes on messenger RNA (mRNA) at base-pair resolution. The ribosome is responsible for translating mRNA into proteins, so information about its occupancy offers a detailed view of ribosome density and position which could be used to discover new translated open reading frames (ORFs), among other things. In this work, we propose Rp-Bp, an unsupervised Bayesian approach to predict translated ORFs from ribosome profiles. We use state-of-the-art Markov chain Monte Carlo techniques to estimate posterior distributions of the likelihood of translation of each ORF. Hence, an important feature of Rp-Bp is its ability to incorporate and propagate uncertainty in the prediction process. A second novel contribution is automatic Bayesian selection of read lengths and ribosome P-site offsets (BPPS). We empirically demonstrate that our read length selection technique modestly improves sensitivity by identifying more canonical and non-canonical ORFs. Proteomics- and quantitative translation initiation sequencing-based validation verifies the high quality of all of the predictions. Experimental comparison shows that Rp-Bp results in more peptide identifications and proteomics-validated ORF predictions compared to another recent tool for translation prediction.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biosíntesis de Proteínas , Ribosomas/química , Análisis de Secuencia de ARN/métodos , Animales , Teorema de Bayes , Caenorhabditis elegans/genética , Simulación por Computador , Células HEK293 , Humanos , Ratones , Sistemas de Lectura Abierta , Péptidos/química , Proteómica , Ribosomas/metabolismo
16.
PLoS Genet ; 12(9): e1006313, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27631780

RESUMEN

XRN2 is a conserved 5'→3' exoribonuclease that complexes with proteins that contain XRN2-binding domains (XTBDs). In Caenorhabditis elegans (C. elegans), the XTBD-protein PAXT-1 stabilizes XRN2 to retain its activity. XRN2 activity is also promoted by 3'(2'),5'-bisphosphate nucleotidase 1 (BPNT1) through hydrolysis of an endogenous XRN inhibitor 3'-phosphoadenosine-5'-phosphate (PAP). Here, we find through unbiased screening that loss of bpnt-1 function suppresses lethality caused by paxt-1 deletion. This unexpected finding is explained by XRN2 autoregulation, which occurs through repression of a cryptic promoter activity and destabilization of the xrn-2 transcript. De-repression appears to be triggered such that more robust XRN2 perturbation, by elimination of both PAXT-1 and BPNT1, is less detrimental to worm viability than absence of PAXT-1 alone. Indeed, we find that two distinct XRN2 repression mechanisms are alleviated at different thresholds of XRN2 inactivation. Like more than 15% of C. elegans genes, xrn-2 occurs in an operon, and we identify additional operons under its control, consistent with a broader function of XRN2 in polycistronic gene regulation. Regulation occurs through intercistronic regions that link genes in an operon, but a part of the mechanisms may allow XRN2 to operate on monocistronic genes in organisms lacking operons.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Exorribonucleasas/genética , Nucleotidasas/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas Portadoras/biosíntesis , Exorribonucleasas/antagonistas & inhibidores , Regulación de la Expresión Génica , Genes/genética , Homeostasis/genética , Operón/genética , Mutaciones Letales Sintéticas/genética
17.
EMBO Rep ; 16(4): 500-11, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25724380

RESUMEN

MicroRNAs (miRNAs) regulate target mRNAs by silencing them. Reciprocally, however, target mRNAs can also modulate miRNA stability. Here, we uncover a remarkable efficacy of target RNA-directed miRNA degradation (TDMD) in rodent primary neurons. Coincident with degradation, and while still bound to Argonaute, targeted miRNAs are 3' terminally tailed and trimmed. Absolute quantification of both miRNAs and their decay-inducing targets suggests that neuronal TDMD is multiple turnover and does not involve co-degradation of the target but rather competes with miRNA-mediated decay of the target. Moreover, mRNA silencing, but not TDMD, relies on cooperativity among multiple target sites to reach high efficacy. This knowledge can be harnessed for effective depletion of abundant miRNAs. Our findings bring insight into a potent miRNA degradation pathway in primary neurons, whose TDMD activity greatly surpasses that of non-neuronal cells and established cell lines. Thus, TDMD may be particularly relevant for miRNA regulation in the nervous system.


Asunto(s)
Proteínas Argonautas/metabolismo , Cerebelo/metabolismo , Hipocampo/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Animales , Proteínas Argonautas/genética , Emparejamiento Base , Secuencia de Bases , Cerebelo/citología , Regulación de la Expresión Génica , Vectores Genéticos , Hipocampo/citología , Lentivirus/genética , Ratones , MicroARNs/genética , Datos de Secuencia Molecular , Neuronas/citología , Cultivo Primario de Células , Estabilidad del ARN , ARN Mensajero/genética , Ratas , Transducción de Señal
18.
Nucleic Acids Res ; 43(6): 3344-57, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25753661

RESUMEN

The spliceosome is a large molecular machine that serves to remove the intervening sequences that are present in most eukaryotic pre-mRNAs. At its core are five small nuclear ribonucleoprotein complexes, the U1, U2, U4, U5 and U6 snRNPs, which undergo dynamic rearrangements during splicing. Their reutilization for subsequent rounds of splicing requires reversion to their original configurations, but little is known about this process. Here, we show that ZK863.4/USIP-1 (U Six snRNA-Interacting Protein-1) is a ribonucleotidyl transferase that promotes accumulation of the Caenorhabditis elegans U6 snRNA. Endogenous USIP-1-U6 snRNA complexes lack the Lsm proteins that constitute the protein core of the U6 snRNP, but contain the U6 snRNP recycling factor SART3/B0035.12. Furthermore, co-immunoprecipitation experiments suggest that SART3 but not USIP-1 occurs also in a separate complex containing both the U4 and U6 snRNPs. Based on this evidence, genetic interaction between usip-1 and sart-3, and the apparent dissociation of Lsm proteins from the U6 snRNA during spliceosome activation, we propose that USIP-1 functions upstream of SART3 to promote U6 snRNA recycling.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , ARN de Helminto/metabolismo , ARN Nuclear Pequeño/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Genes de Helminto , Modelos Biológicos , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Interferencia de ARN , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Estabilidad del ARN , ARN de Helminto/genética , ARN Nuclear Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo
19.
Trends Biochem Sci ; 37(10): 436-46, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22921610

RESUMEN

MicroRNAs (miRNAs) are short (∼22 nucleotide) RNAs that are important for the regulation of numerous biological processes. Accordingly, the expression of miRNAs is itself tightly controlled by mechanisms acting at the level of transcription as well as processing of miRNA precursors. Recently, active degradation of mature miRNAs has been identified as another mechanism that is important for miRNA homeostasis. Here we review the molecular factors and cellular conditions that promote miRNA turnover. We also discuss what is known about the physiological relevance of miRNA decay.


Asunto(s)
MicroARNs , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo
20.
Dev Biol ; 401(2): 276-86, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25732775

RESUMEN

The heterochronic pathway controls temporal patterning during Caenorhabditis elegans larval development. The highly conserved let-7 microRNA (miRNA) plays a key role in this pathway, directing the larval-to-adult (L/A) transition. Hence, knowledge of the genetic interactome of let-7 has the potential to provide insight into both control of temporal cell fates and mechanisms of regulation and function of miRNAs. Here, we report the results of a genome-wide, RNAi-based screen for suppressors of let-7 mutant vulval bursting. The 201 genetic interaction partners of let-7 thus identified include genes that promote target silencing activity of let-7, seam cell differentiation, or both. We illustrate the suitability of our approach by uncovering the mitotic cyclin-dependent kinase CDK-1 as a downstream effector of let-7 that affects both seam cell proliferation and differentiation, and by identifying a core set of candidate modulators of let-7 activity, which includes all subunits of the condensin II complex. We propose that the genes identified in our screen thus constitute a valuable resource for studies of the heterochronic pathway and miRNAs.


Asunto(s)
Tipificación del Cuerpo/genética , Proteína Quinasa CDC2/genética , Caenorhabditis elegans/embriología , MicroARNs/genética , Adenosina Trifosfatasas/genética , Animales , Proteína Quinasa CDC2/biosíntesis , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Complejos Multiproteicos/genética , Interferencia de ARN , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA