Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Exp Dermatol ; 29(9): 790-800, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32682345

RESUMEN

Microbial endocrinology is studying the response of microorganisms to hormones and neurohormones and the microbiota production of hormones-like molecules. Until now, it was mainly applied to the gut and revealed that the intestinal microbiota should be considered as a real organ in constant and bilateral interactions with the whole human body. The skin harbours the second most abundant microbiome and contains an abundance of nerve terminals and capillaries, which in addition to keratinocytes, fibroblasts, melanocytes, dendritic cells and endothelial cells, release a huge diversity of hormones and neurohormones. In the present review, we will examine recent experimental data showing that, in skin, molecules such as substance P, calcitonin gene-related peptide, natriuretic peptides and catecholamines can directly affect the physiology and virulence of common skin-associated bacteria. Conversely, bacteria are able to synthesize and release compounds including histamine, glutamate and γ-aminobutyric acid or peptides showing partial homology with neurohormones such as α-melanocyte-stimulating hormone (αMSH). The more surprising is that some viruses can also encode neurohormones mimicking proteins. Taken together, these elements demonstrate that there is also a cutaneous microbial endocrinology and this emerging concept will certainly have important consequences in dermatology.


Asunto(s)
Bacterias/metabolismo , Neurotransmisores/biosíntesis , Piel/microbiología , Humanos , Microbiota , Piel/metabolismo
2.
Bioengineering (Basel) ; 9(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36354557

RESUMEN

Over the decades, conventional in vitro culture systems and animal models have been used to study physiology, nutrient or drug metabolisms including mechanical and physiopathological aspects. However, there is an urgent need for Integrated Testing Strategies (ITS) and more sophisticated platforms and devices to approach the real complexity of human physiology and provide reliable extrapolations for clinical investigations and personalized medicine. Organ-on-a-chip (OOC), also known as a microphysiological system, is a state-of-the-art microfluidic cell culture technology that sums up cells or tissue-to-tissue interfaces, fluid flows, mechanical cues, and organ-level physiology, and it has been developed to fill the gap between in vitro experimental models and human pathophysiology. The wide range of OOC platforms involves the miniaturization of cell culture systems and enables a variety of novel experimental techniques. These range from modeling the independent effects of biophysical forces on cells to screening novel drugs in multi-organ microphysiological systems, all within microscale devices. As in living biosystems, the development of vascular structure is the salient feature common to almost all organ-on-a-chip platforms. Herein, we provide a snapshot of this fast-evolving sophisticated technology. We will review cutting-edge developments and advances in the OOC realm, discussing current applications in the biomedical field with a detailed description of how this technology has enabled the reconstruction of complex multi-scale and multifunctional matrices and platforms (at the cellular and tissular levels) leading to an acute understanding of the physiopathological features of human ailments and infections in vitro.

3.
Life (Basel) ; 12(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35455029

RESUMEN

Bacteria can bind on clothes, but the impacts of textiles leachables on cutaneous bacteria remain unknown. Here, we studied for the first time the effects of cotton and flax obtained through classical and soft ecological agriculture on the representatives S. aureus and S. epidermidis bacteria of the cutaneous microbiota. Crude flax showed an inhibitory potential on S. epidermidis bacterial lawns whereas cotton had no effect. Textile fiber leachables were produced in bacterial culture media, and these extracts were tested on S. aureus and S. epidermidis. Bacterial growth was not impacted, but investigation by the crystal violet technique and confocal microscopy showed that all extracts affected biofilm formation by the two staphylococci species. An influence of cotton and flax culture conditions was clearly observed. Flax extracts had strong inhibitory impacts and induced the formation of mushroom-like defense structures by S. aureus. Conversely, production of biosurfactant by bacteria and their surface properties were not modified. Resistance to antibiotics also remained unchanged. All textile extracts, and particularly soft organic flax, showed strong inhibitory effects on S. aureus and S. epidermidis cytotoxicity on HaCaT keratinocytes. Analysis of flax leachables showed the presence of benzyl alcohol that could partly explain the effects of flax extracts.

4.
Int J Mol Sci ; 12(3): 1787-806, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21673923

RESUMEN

To decontaminate dredged harbor sediments by bioremediation or electromigration processes, adding biosurfactants could enhance the bioavailability or mobility of contaminants in an aqueous phase. Pure amphisin from Pseudomonas fluorescens DSS73 displays increased effectiveness in releasing polycyclic aromatic hydrocarbons (PAHs) strongly adsorbed to sediments when compared to a synthetic anionic surfactant. Amphisin production by the bacteria in the natural environment was also considered. DSS73's growth is weakened by three model PAHs above saturation, but amphisin is still produced. Estuarine water feeding the dredged material disposal site of a Norman harbor (France) allows both P. fluorescens DSS73 growth and amphisin production.


Asunto(s)
Sedimentos Geológicos/química , Péptidos Cíclicos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Adsorción , Biodegradación Ambiental , Sedimentos Geológicos/microbiología , Hidrocarburos Policíclicos Aromáticos/química , Pseudomonas fluorescens/metabolismo , Solubilidad , Agua/química , Contaminantes Químicos del Agua/química
5.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33414288

RESUMEN

Staphylococcus spp. and Pseudomonas spp. are widely distributed bacteria in the environment and are found in association with animals and humans. Here, we present the draft genome sequence data of the healthy human skin commensal strains Staphylococcus aureus MFP03, Staphylococcus epidermidis MFP04, Staphylococcus capitis MFP08, and Pseudomonas fluorescens MFP05.

6.
BMC Microbiol ; 10: 215, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20698984

RESUMEN

BACKGROUND: Pseudomonas fluorescens is present in low number in the intestinal lumen and has been proposed to play a role in Crohn's disease (CD). Indeed, a highly specific antigen, I2, has been detected in CD patients and correlated to the severity of the disease. We aimed to determine whether P. fluorescens was able to adhere to human intestinal epithelial cells (IECs), induce cytotoxicity and activate a proinflammatory response. RESULTS: Behaviour of the clinical strain P. fluorescens MFN1032 was compared to that of the psychrotrophic strain P. fluorescens MF37 and the opportunistic pathogen P. aeruginosa PAO1. Both strains of P. fluorescens were found to adhere on Caco-2/TC7 and HT-29 cells. Their cytotoxicity towards these two cell lines determined by LDH release assays was dose-dependent and higher for the clinical strain MFN1032 than for MF37 but lower than P. aeruginosa PAO1. The two strains of P. fluorescens also induced IL-8 secretion by Caco-2/TC7 and HT-29 cells via the AP-1 signaling pathway whereas P. aeruginosa PAO1 potentially used the NF-kappaB pathway. CONCLUSIONS: The present work shows, for the first time, that P. fluorescens MFN1032 is able to adhere to IECs, exert cytotoxic effects and induce a proinflammatory reaction. Our results are consistent with a possible contribution of P. fluorescens in CD and could explain the presence of specific antibodies against this bacterium in the blood of patients.


Asunto(s)
Células Epiteliales/inmunología , Interleucina-8/inmunología , Intestinos/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas fluorescens/inmunología , Transducción de Señal , Factor de Transcripción AP-1/inmunología , Adhesión Bacteriana , Células CACO-2 , Citotoxicidad Inmunológica , Células Epiteliales/microbiología , Células HT29 , Humanos , Intestinos/microbiología , FN-kappa B/inmunología , Infecciones por Pseudomonas/microbiología , Pseudomonas fluorescens/fisiología
7.
Front Microbiol ; 11: 591839, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363523

RESUMEN

The skin constitutes with its microbiota the first line of body defense against exogenous stress including air pollution. Especially in urban or sub-urban areas, it is continuously exposed to many environmental pollutants including gaseous nitrogen dioxide (gNO2). Nowadays, it is well established that air pollution has major effects on the human skin, inducing various diseases often associated with microbial dysbiosis. However, very few is known about the impact of pollutants on skin microbiota. In this study, a new approach was adopted, by considering the alteration of the cutaneous microbiota by air pollutants as an indirect action of the harmful molecules on the skin. The effects of gNO2 on this bacterial skin microbiota was investigated using a device developed to mimic the real-life contact of the gNO2 with bacteria on the surface of the skin. Five strains of human skin commensal bacteria were considered, namely Staphylococcus aureus MFP03, Staphylococcus epidermidis MFP04, Staphylococcus capitis MFP08, Pseudomonas fluorescens MFP05, and Corynebacterium tuberculostearicum CIP102622. Bacteria were exposed to high concentration of gNO2 (10 or 80 ppm) over a short period of 2 h inside the gas exposure device. The physiological, morphological, and molecular responses of the bacteria after the gas exposure were assessed and compared between the different strains and the two gNO2 concentrations. A highly significant deleterious effect of gNO2 was highlighted, particularly for S. capitis MFP08 and C. tuberculostearicum CIP102622, while S. aureus MFP03 seems to be the less sensitive strain. It appeared that the impact of this nitrosative stress differs according to the bacterial species and the gNO2 concentration. Thus the exposition to gNO2 as an air pollutant could contribute to dysbiosis, which would affect skin homeostasis. The response of the microbiota to the nitrosative stress could be involved in some pathologies such as atopic dermatitis.

8.
BMC Res Notes ; 4: 503, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22099854

RESUMEN

BACKGROUND: Low environmental air quality is a significant cause of mortality and morbidity and this question is now emerging as a main concern of governmental authorities. Airborne pollution results from the combination of chemicals, fine particles, and micro-organisms quantitatively or qualitatively dangerous for health or for the environment. Increasing regulations and limitations for outdoor air quality have been decreed in regards to chemicals and particles contrary to micro-organisms. Indeed, pertinent and reliable tests to evaluate this biohazard are scarce. In this work, our purpose was to evaluate the Caenorhaditis elegans killing test, a model considered as an equivalent to the mouse acute toxicity test in pharmaceutical industry, in order to monitor air bacterial quality. FINDINGS: The present study investigates the bacterial population in dust clouds generated during crop ship loading in harbor installations (Rouen harbor, Normandy, France). With a biocollector, airborne bacteria were impacted onto the surface of agar medium. After incubation, a replicate of the colonies on a fresh agar medium was done using a velvet. All the replicated colonies were pooled creating the "Total Air Sample". Meanwhile, all the colonies on the original plate were isolated. Among which, five representative bacterial strains were chosen. The virulence of these representatives was compared to that of the "Total Air Sample" using the Caenorhaditis elegans killing test. The survival kinetic of nematodes fed with the "Total Air Sample" is consistent with the kinetics obtained using the five different representatives strains. CONCLUSIONS: Bacterial air quality can now be monitored in a one shot test using the Caenorhaditis elegans killing test.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA