Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37299010

RESUMEN

Volatile organic compounds (VOCs) are byproducts from metabolic pathways that can be detected in exhaled breath and have been reported as biomarkers for different diseases. The gold standard for analysis is gas chromatography-mass spectrometry (GC-MS), which can be coupled with various sampling methods. The current study aims to develop and compare different methods for sampling and preconcentrating VOCs using solid-phase microextraction (SPME). An in-house sampling method, direct-breath SPME (DB-SPME), was developed to directly extract VOCs from breath using a SPME fiber. The method was optimized by exploring different SPME types, the overall exhalation volume, and breath fractionation. DB-SPME was quantitatively compared to two alternative methods involving the collection of breath in a Tedlar bag. In one method, VOCs were directly extracted from the Tedlar bag (Tedlar-SPME) and in the other, the VOCs were cryothermally transferred from the Tedlar bag to a headspace vial (cryotransfer). The methods were verified and quantitatively compared using breath samples (n = 15 for each method respectively) analyzed by GC-MS quadrupole time-of-flight (QTOF) for compounds including but not limited to acetone, isoprene, toluene, limonene, and pinene. The cryotransfer method was the most sensitive, demonstrating the strongest signal for the majority of the VOCs detected in the exhaled breath samples. However, VOCs with low molecular weights, including acetone and isoprene, were detected with the highest sensitivity using the Tedlar-SPME. On the other hand, the DB-SPME was less sensitive, although it was rapid and had the lowest background GC-MS signal. Overall, the three breath-sampling methods can detect a wide variety of VOCs in breath. The cryotransfer method may be optimal when collecting a large number of samples using Tedlar bags, as it allows the long-term storage of VOCs at low temperatures (-80 °C), while Tedlar-SPME may be more effective when targeting relatively small VOCs. The DB-SPME method may be the most efficient when more immediate analyses and results are required.


Asunto(s)
Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Acetona/análisis , Microextracción en Fase Sólida , Tereftalatos Polietilenos/análisis , Pruebas Respiratorias/métodos , Biopsia
2.
Molecules ; 27(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35807522

RESUMEN

Volatile organic compounds (VOCs) in urine are potential biomarkers of breast cancer. Previously, our group has investigated breast cancer through analysis of VOCs in mouse urine and identified a panel of VOCs with the ability to monitor tumor progression. However, an unanswered question is whether VOCs can be exploited similarly to monitor the efficacy of antitumor treatments over time. Herein, subsets of tumor-bearing mice were treated with pitavastatin at high (8 mg/kg) and low (4 mg/kg) concentrations, and urine was analyzed through solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Previous investigations using X-ray and micro-CT analysis indicated pitavastatin administered at 8 mg/kg had a protective effect against mammary tumors, whereas 4 mg/kg treatments did not inhibit tumor-induced damage. VOCs from mice treated with pitavastatin were compared to the previously analyzed healthy controls and tumor-bearing mice using chemometric analyses, which revealed that mice treated with pitavastatin at high concentrations were significantly different than tumor-bearing untreated mice in the direction of healthy controls. Mice treated with low concentrations demonstrated significant differences relative to healthy controls and were reflective of tumor-bearing untreated mice. These results show that urinary VOCs can accurately and noninvasively predict the efficacy of pitavastatin treatments over time.


Asunto(s)
Neoplasias Mamarias Animales , Compuestos Orgánicos Volátiles , Animales , Quimiometría , Cromatografía de Gases y Espectrometría de Masas/métodos , Ratones , Quinolinas , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis
3.
J Chromatogr A ; 1685: 463606, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36370629

RESUMEN

Volatile organic compounds (VOCs) are biomarkers of disease, which can be utilized for accurate diagnostics. The gold standard for VOC identification is gas chromatography-mass spectrometry (GC-MS) as it allows for structure elucidation and quantification. Headspace solid phase microextraction (HS-SPME) is often used in biomarker discovery due to its ability to preconcentrate VOCs prior to GC-MS analysis. However, HS-SPME GC-MS is time-consuming, expensive and requires trained personnel. Gas sensor arrays can detect VOC biomarkers at a point-of-care and therefore are more suitable for disease diagnostics in the clinic. Nevertheless, qualification and optimization of sensing layers is tedious as each VOC of interest needs to be tested individually. Therefore, using SPME fibers to extract VOCs and GC-MS to quantitate the analytes may be an efficient strategy with high throughput to tune sensing layers and increase analyte affinity. To investigate this, suspensions of polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-carbon black (PVDF-CB) fabricated at varying concentration were immobilized on SPME fibers through physical deposition, used to extract urinary VOCs and were subject to GC-MS analysis. The addition of CB shows increased fiber performance in terms of total integrated signal and sensitivity toward individual VOCs. PVDF-CB fibers were compared to a commercial polydimethylsiloxane (PDMS) SPME fiber run using the same method. The PVDF-CB fiber outperformed the commercial fiber in detecting numerous urinary VOCs of interest. Results of this study show not only that custom SPME fiber performance can be evaluated through GC-MS analysis, but the capability of custom fibers to adsorb urinary VOCs can be tuned based on properties of interest. Hence, this method may be utilized as an analytical tool to characterize and tune gas sensing layers with high analytical throughput.


Asunto(s)
Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Microextracción en Fase Sólida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Hollín , Fibras de la Dieta/análisis
4.
Cancers (Basel) ; 13(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806757

RESUMEN

Previous studies have shown that volatile organic compounds (VOCs) are potential biomarkers of breast cancer. An unanswered question is how urinary VOCs change over time as tumors progress. To explore this, BALB/c mice were injected with 4T1.2 triple negative murine tumor cells in the tibia. This typically causes tumor progression and osteolysis in 1-2 weeks. Samples were collected prior to tumor injection and from days 2-19. Samples were analyzed by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry. Univariate analysis identified VOCs that were biomarkers for breast cancer; some of these varied significantly over time and others did not. Principal component analysis was used to distinguish Cancer (all Weeks) from Control and Cancer Week 1 from Cancer Week 3 with over 90% accuracy. Forward feature selection and linear discriminant analysis identified a unique panel that could identify tumor presence with 94% accuracy and distinguish progression (Cancer Week 1 from Cancer Week 3) with 97% accuracy. Principal component regression analysis also demonstrated that a VOC panel could predict number of days since tumor injection (R2 = 0.71 and adjusted R2 = 0.63). VOC biomarkers identified by these analyses were associated with metabolic pathways relevant to breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA