Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 33(9): 1455-1464, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37793781

RESUMEN

Assisted reproductive technologies (ARTs), including in vitro maturation and fertilization (IVF), are increasingly used in human and animal reproduction. Whether these technologies directly affect the rate of de novo mutation (DNM), and to what extent, has been a matter of debate. Here we take advantage of domestic cattle, characterized by complex pedigrees that are ideally suited to detect DNMs and by the systematic use of ART, to study the rate of de novo structural variation (dnSV) in this species and how it is impacted by IVF. By exploiting features of associated de novo point mutations (dnPMs) and dnSVs in clustered DNMs, we provide strong evidence that (1) IVF increases the rate of dnSV approximately fivefold, and (2) the corresponding mutations occur during the very early stages of embryonic development (one- and two-cell stage), yet primarily affect the paternal genome.


Asunto(s)
Desarrollo Embrionario , Familia , Embarazo , Femenino , Animales , Bovinos , Humanos , Mutación , Linaje , Genoma Humano
2.
PLoS Genet ; 17(7): e1009331, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34288907

RESUMEN

Clinical mastitis (CM) is an inflammatory disease occurring in the mammary glands of lactating cows. CM is under genetic control, and a prominent CM resistance QTL located on chromosome 6 was reported in various dairy cattle breeds. Nevertheless, the biological mechanism underpinning this QTL has been lacking. Herein, we mapped, fine-mapped, and discovered the putative causal variant underlying this CM resistance QTL in the Dutch dairy cattle population. We identified a ~12 kb multi-allelic copy number variant (CNV), that is in perfect linkage disequilibrium with a lead SNP, as a promising candidate variant. By implementing a fine-mapping and through expression QTL mapping, we showed that the group-specific component gene (GC), a gene encoding a vitamin D binding protein, is an excellent candidate causal gene for the QTL. The multiplicated alleles are associated with increased GC expression and low CM resistance. Ample evidence from functional genomics data supports the presence of an enhancer within this CNV, which would exert cis-regulatory effect on GC. We observed that strong positive selection swept the region near the CNV, and haplotypes associated with the multiplicated allele were strongly selected for. Moreover, the multiplicated allele showed pleiotropic effects for increased milk yield and reduced fertility, hinting that a shared underlying biology for these effects may revolve around the vitamin D pathway. These findings together suggest a putative causal variant of a CM resistance QTL, where a cis-regulatory element located within a CNV can alter gene expression and affect multiple economically important traits.


Asunto(s)
Elementos de Facilitación Genéticos , Mastitis Bovina/genética , Proteína de Unión a Vitamina D/genética , Animales , Bovinos , Variaciones en el Número de Copia de ADN , Femenino , Predisposición Genética a la Enfermedad , Haplotipos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Secuenciación Completa del Genoma
3.
Genomics ; 115(2): 110589, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36842749

RESUMEN

In general, the relationship between the predicted functional consequences of missense mutations mapping to genes known to be involved in human diseases and the severity of disease manifestations is weak. In this study, we tested in pigs whether missense single nucleotide polymorphisms (SNPs), predicted to have consequences on the function of genes related to lipid metabolism are associated with lipid phenotypes. Association analysis demonstrated that nine out of 72 nominally associated SNPs were classified as "highly" or "very highly consistent" in silico-predicted functional mutations and did not show association with lipid traits expected to be affected by inactivation of the corresponding gene. Although the lack of endophenotypes and the limited sample size of certain genotypic classes might have limited to some extent the reach of the current study, our data indicate that present-day bioinformatic tools have a modest ability to predict the impact of missense mutations on complex phenotypes.


Asunto(s)
Metabolismo de los Lípidos , Mutación Missense , Porcinos , Humanos , Animales , Metabolismo de los Lípidos/genética , Fenotipo , Genotipo , Lípidos , Polimorfismo de Nucleótido Simple
4.
BMC Genomics ; 24(1): 225, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127590

RESUMEN

BACKGROUND: Structural variants (SVs) are chromosomal segments that differ between genomes, such as deletions, duplications, insertions, inversions and translocations. The genomics revolution enabled the discovery of sub-microscopic SVs via array and whole-genome sequencing (WGS) data, paving the way to unravel the functional impact of SVs. Recent human expression QTL mapping studies demonstrated that SVs play a disproportionally large role in altering gene expression, underlining the importance of including SVs in genetic analyses. Therefore, this study aimed to generate and explore a high-quality bovine SV catalogue exploiting a unique cattle family cohort data (total 266 samples, forming 127 trios). RESULTS: We curated 13,731 SVs segregating in the population, consisting of 12,201 deletions, 1,509 duplications, and 21 multi-allelic CNVs (> 50-bp). Of these, we validated a subset of copy number variants (CNVs) utilising a direct genotyping approach in an independent cohort, indicating that at least 62% of the CNVs are true variants, segregating in the population. Among gene-disrupting SVs, we prioritised two likely high impact duplications, encompassing ORM1 and POPDC3 genes, respectively. Liver expression QTL mapping results revealed that these duplications are likely causing altered gene expression, confirming the functional importance of SVs. Although most of the accurately genotyped CNVs are tagged by single nucleotide polymorphisms (SNPs) ascertained in WGS data, most CNVs were not captured by individual SNPs obtained from a 50K genotyping array. CONCLUSION: We generated a high-quality SV catalogue exploiting unique whole genome sequenced bovine family cohort data. Two high impact duplications upregulating the ORM1 and POPDC3 are putative candidates for postpartum feed intake and hoof health traits, thus warranting further investigation. Generally, CNVs were in low LD with SNPs on the 50K array. Hence, it remains crucial to incorporate CNVs via means other than tagging SNPs, such as investigation of tagging haplotypes, direct imputation of CNVs, or direct genotyping as done in the current study. The SV catalogue and the custom genotyping array generated in the current study will serve as valuable resources accelerating utilisation of full spectrum of genetic variants in bovine genomes.


Asunto(s)
Genoma , Genómica , Femenino , Humanos , Bovinos , Animales , Genómica/métodos , Genotipo , Variaciones en el Número de Copia de ADN , Haplotipos , Polimorfismo de Nucleótido Simple , Proteínas Musculares/genética , Moléculas de Adhesión Celular/genética
5.
Mol Biol Evol ; 39(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35642310

RESUMEN

It is largely unknown how mammalian genomes evolve under rapid speciation and environmental adaptation. An excellent model for understanding fast evolution is provided by the genus Sus, which diverged relatively recently and lacks postzygotic isolation. Here, we present a high-quality reference genome of the Visayan warty pig, which is specialized to a tropical island environment. Comparing the genome sequences and chromatin contact maps of the Visayan warty pig (Sus cebifrons) and domestic pig (Sus scrofa), we characterized the dynamics of chromosomal structure evolution during Sus speciation, revealing the similar chromosome conformation as the potential biological mechanism of frequent postdivergence hybridization among Suidae. We further investigated the different signatures of adaptive selection and domestication in Visayan warty pig and domestic pig with specific emphasize on the evolution of olfactory and gustatory genes, elucidating higher olfactory diversity in Visayan warty pig and positive and relaxed evolution of bitter and fat taste receptors, respectively, in domestic pig. Our comprehensive evolutionary and comparative genome analyses provide insight into the dynamics of genomes and how these change over relative short evolutionary times, as well as how these genomic differences encode for differences in the phenotypes.


Asunto(s)
Cromosomas , Genoma , Animales , Genómica , Sus scrofa/genética , Porcinos/genética
6.
Mamm Genome ; 34(4): 520-530, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37805667

RESUMEN

Suids, both domesticated and wild, are found on all continents except for Antarctica and provide valuable food resources for humans in addition to serving as important models for biomedical research. Continuing advances in genome sequencing have allowed researchers to compare the genomes from diverse populations of suids helping to clarify their evolution and dispersal. Further analysis of these samples may provide clues to improve disease resistance/resilience and productivity in domestic suids as well as better ways of classifying and conserving genetic diversity within wild and captive suids. Collecting samples from diverse populations of suids is resource intensive and may negatively impact endangered populations. Here we catalog extensive tissue and DNA samples from suids in collections in both Europe and North America. We include samples that have previously been used for whole genome sequencing, targeted DNA sequencing, RNA sequencing, and reduced representation bisulfite sequencing (RRBS). This work provides an important centralized resource for researchers who wish to access published databases.


Asunto(s)
Genoma , Genómica , Humanos , Porcinos , Animales , Genoma/genética , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma , ADN
7.
Genet Sel Evol ; 55(1): 5, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670351

RESUMEN

BACKGROUND: In poultry, the population structure of local breeds is usually complex mainly due to unrecorded breeding. Local chicken breeds offer an interesting proxy to understand the complexity of population structure in the context of human-mediated development of diverse morphologies and varieties. We studied 37 traditional Dutch chicken breeds to investigate population structure and the corresponding genomic impact using whole-genome sequence data. RESULTS: Looking at the genetic differences between breeds, the Dutch chicken breeds demonstrated a complex and admixed subdivided structure. The dissection of this complexity highlighted the influence of selection adhering to management purposes, as well as the role of geographic distance within subdivided breed clusters. Identification of signatures of genetic differentiation revealed genomic regions that are associated with diversifying phenotypic selection between breeds, including dwarf size (bantam) and feather color. In addition, with a case study of a recently developed bantam breed developed by crossbreeding, we provide a genomic perspective on the effect of crossbreeding. CONCLUSIONS: This study demonstrates the complex population structure of local traditional Dutch chicken, and provides insight into the genomic basis and the factors involved in the formation of this complexity.


Asunto(s)
Polimorfismo de Nucleótido Simple , Aves de Corral , Animales , Humanos , Aves de Corral/genética , Genómica , Hibridación Genética , Pollos/genética , Geografía
8.
Genet Sel Evol ; 55(1): 64, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723431

RESUMEN

BACKGROUND: China has one third of the worldwide indigenous pig breeds. The Henan province is one of the earliest pig domestication centers of China (about 8000 years ago). However, the precise genetic characteristics of the Henan local pig breeds are still obscure. To understand the origin and the effects of selection on these breeds, we performed various analyses on lineage composition, genetic structure, and detection of selection sweeps and introgression in three of these breeds (Queshan, Nanyang and Huainan) using genotyping data on 125 Queshan, 75 Nanyang, 16 Huainan pigs and 878 individuals from 43 Eurasian pig breeds. RESULTS: We found no clear evidence of ancestral domestic pig DNA lineage in the Henan local breeds, which have an extremely complicated genetic background. Not only do they share genes with some northern Chinese pig breeds, such as Erhualian, Hetaodaer, and Laiwu, but they also have a high admixture of genes from foreign pig breeds (33-40%). Two striking selection sweeps in small regions of chromosomes 2 and 14 common to the Queshan and Nanyang breeds were identified. The most significant enrichment was for lipid kinase activity (GO:0043550) with the genes FII, AMBRA1, and PIK3IP1. Another interesting 636.35-kb region on chromosome 14 contained a cluster of spermatogenesis genes (OSBP2, GAL3ST1, PLA2G3, LIMK2, and PATZ1), a bisexual sterility gene MORC2, and a fat deposition gene SELENOM. Reproduction and growth genes LRP4, FII, and ARHGAP1 were present in a 238.05-kb region on SSC2 under selection. We also identified five loci associated with body length (P = 0.004) on chromosomes 1 and 12 that were introgressed from foreign pig breeds into the Henan breeds. In addition, the Chinese indigenous pig breeds fell into four main types instead of the previously reported six, among which the Eastern type could be divided into two subgroups. CONCLUSIONS: Admixture of North China, East China and foreign pigs contributed to high genetic diversity of Henan local pigs. Ontology terms associated with lipid kinase activity and spermatogenesis and growth shaping by introgression of European genes in Henan pigs were identified through selective sweep analyses.


Asunto(s)
Metabolismo de los Lípidos , Sus scrofa , Masculino , Porcinos/genética , Animales , Sus scrofa/genética , China , Espermatogénesis/genética , Lípidos
9.
Nucleic Acids Res ; 49(4): 1859-1871, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33524155

RESUMEN

Animal models are crucial for advancing our knowledge about the molecular pathways involved in human diseases. However, it remains unclear to what extent tissue expression of pathways in healthy individuals is conserved between species. In addition, organism-specific information on pathways in animal models is often lacking. Within these limitations, we explore the possibilities that arise from publicly available data for the animal models mouse, rat, and pig. We approximate the animal pathways activity by integrating the human counterparts of curated pathways with tissue expression data from the models. Specifically, we compare whether the animal orthologs of the human genes are expressed in the same tissue. This is complicated by the lower coverage and worse quality of data in rat and pig as compared to mouse. Despite that, from 203 human KEGG pathways and the seven tissues with best experimental coverage, we identify 95 distinct pathways, for which the tissue expression in one animal model agrees better with human than the others. Our systematic pathway-tissue comparison between human and three animal modes points to specific similarities with human and to distinct differences among the animal models, thereby suggesting the most suitable organism for modeling a human pathway or tissue.


Asunto(s)
Modelos Animales , Animales , Expresión Génica , Genoma , Humanos , Ratones , Especificidad de Órganos , Mapeo de Interacción de Proteínas , Ratas , Porcinos
10.
PLoS Genet ; 16(9): e1009027, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32966296

RESUMEN

The availability of genomes for many species has advanced our understanding of the non-protein-coding fraction of the genome. Comparative genomics has proven itself to be an invaluable approach for the systematic, genome-wide identification of conserved non-protein-coding elements (CNEs). However, for many non-mammalian model species, including chicken, our capability to interpret the functional importance of variants overlapping CNEs has been limited by current genomic annotations, which rely on a single information type (e.g. conservation). We here studied CNEs in chicken using a combination of population genomics and comparative genomics. To investigate the functional importance of variants found in CNEs we develop a ch(icken) Combined Annotation-Dependent Depletion (chCADD) model, a variant effect prediction tool first introduced for humans and later on for mouse and pig. We show that 73 Mb of the chicken genome has been conserved across more than 280 million years of vertebrate evolution. The vast majority of the conserved elements are in non-protein-coding regions, which display SNP densities and allele frequency distributions characteristic of genomic regions constrained by purifying selection. By annotating SNPs with the chCADD score we are able to pinpoint specific subregions of the CNEs to be of higher functional importance, as supported by SNPs found in these subregions are associated with known disease genes in humans, mice, and rats. Taken together, our findings indicate that CNEs harbor variants of functional significance that should be object of further investigation along with protein-coding mutations. We therefore anticipate chCADD to be of great use to the scientific community and breeding companies in future functional studies in chicken.


Asunto(s)
Pollos/genética , ADN Intergénico/genética , Genómica/métodos , Alelos , Animales , Secuencia Conservada/genética , ADN Intergénico/metabolismo , Evolución Molecular , Frecuencia de los Genes/genética , Variación Genética/genética , Genoma/genética , Intrones/genética , Metagenómica/métodos , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia/métodos
11.
BMC Genomics ; 23(1): 669, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151521

RESUMEN

BACKGROUND: We previously reported a familial thyroid follicular cell carcinoma (FCC) in a large number of Dutch German longhaired pointers and identified two deleterious germline mutations in the TPO gene associated with disease predisposition. However, the somatic mutation profile of the FCC in dogs has not been investigated at a genome-wide scale. RESULTS: Herein, we comprehensively investigated the somatic mutations that potentially contribute to the inherited tumor formation and progression using high depth whole-genome sequencing. A GNAS p.A204D missense mutation was identified in 4 out of 7 FCC tumors by whole-genome sequencing and in 20 out of 32 dogs' tumors by targeted sequencing. In contrast to this, in the human TC, mutations in GNAS gene have lower prevalence. Meanwhile, the homologous somatic mutation in humans has not been reported. These findings suggest a difference in the somatic mutation landscape between TC in these dogs and human TC. Moreover, tumors with the GNAS p.A204D mutation had a significantly lower somatic mutation burden in these dogs. Somatic structural variant and copy number alterations were also investigated, but no potential driver event was identified. CONCLUSION: This study provides novel insight in the molecular mechanism of thyroid carcinoma development in dogs. German longhaired pointers carrying GNAS mutations in the tumor may be used as a disease model for the development and testing of novel therapies to kill the tumor with somatic mutations in the GNAS gene.


Asunto(s)
Carcinoma , Células Epiteliales Tiroideas , Neoplasias de la Tiroides , Animales , Cromograninas/genética , Perros , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Humanos , Mutación , Mutación Missense , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/veterinaria
12.
Mol Biol Evol ; 38(6): 2627-2638, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33620468

RESUMEN

The evolutionary origin of complex organs challenges empirical study because most organs evolved hundreds of millions of years ago. The placenta of live-bearing fish in the family Poeciliidae represents a unique opportunity to study the evolutionary origin of complex organs, because in this family a placenta evolved at least nine times independently. It is currently unknown whether this repeated evolution is accompanied by similar, repeated, genomic changes in placental species. Here, we compare whole genomes of 26 poeciliid species representing six out of nine independent origins of placentation. Evolutionary rate analysis revealed that the evolution of the placenta coincides with convergent shifts in the evolutionary rate of 78 protein-coding genes, mainly observed in transporter- and vesicle-located genes. Furthermore, differences in sequence conservation showed that placental evolution coincided with similar changes in 76 noncoding regulatory elements, occurring primarily around genes that regulate development. The unexpected high occurrence of GATA simple repeats in the regulatory elements suggests an important function for GATA repeats in developmental gene regulation. The distinction in molecular evolution observed, with protein-coding parallel changes more often found in metabolic and structural pathways, compared with regulatory change more frequently found in developmental pathways, offers a compelling model for complex trait evolution in general: changing the regulation of otherwise highly conserved developmental genes may allow for the evolution of complex traits.


Asunto(s)
Evolución Biológica , Genoma , Placenta , Poecilia/genética , Viviparidad de Animales no Mamíferos/genética , Sustitución de Aminoácidos , Animales , Femenino , Embarazo , Selección Genética
13.
Anim Genet ; 53(6): 829-840, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35993291

RESUMEN

The German Longhaired Pointer (GLP) breed is a versatile pointer dog breed. In the current study, we investigated the genetic diversity of these dogs based on SNP array data and compared it to 11 other pointer setter breeds. The results show that GLPs have a relatively low level of inbreeding among these pointer breeds. In addition, with the availability of pedigree information of the GLPs, we demonstrate that the correlation between pedigree-based inbreeding and genotype-based inbreeding coefficients was high (R = 0.89 and 0.85). By investigating population structure between these 12 pointer setter breeds we showed that GLP is a breed distinct from other pointers and shares common ancestry with a few other pointing breeds. Finally, we identified selection signatures in GLPs using the runs of homozygosity islands method. The most significant runs of homozygosity island was detected on chromosome 30 harboring the genes RYR3, FMN1, and GREM1. The RYR3 gene plays a role in skeletal muscle contraction while the FMN1 and GREM1 genes are involved in limb development. The selection on these three genes could have contributed to the excellent athletic performance of GLPs, which is an extremely important characteristic for this hunting dog.


Asunto(s)
Variación Genética , Canal Liberador de Calcio Receptor de Rianodina , Perros , Animales , Canal Liberador de Calcio Receptor de Rianodina/genética , Polimorfismo de Nucleótido Simple , Endogamia , Genotipo , Homocigoto , Selección Genética
14.
PLoS Genet ; 15(3): e1008055, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30875370

RESUMEN

Lethal recessive alleles cause pre- or postnatal death in homozygous affected individuals, reducing fertility. Especially in small size domestic and wild populations, those alleles might be exposed by inbreeding, caused by matings between related parents that inherited the same recessive lethal allele from a common ancestor. In this study we report five relatively common (up to 13.4% carrier frequency) recessive lethal haplotypes in two commercial pig populations. The lethal haplotypes have a large effect on carrier-by-carrier matings, decreasing litter sizes by 15.1 to 21.6%. The causal mutations are of different type including two splice-site variants (affecting POLR1B and TADA2A genes), one frameshift (URB1), and one missense (PNKP) variant, resulting in a complete loss-of-function of these essential genes. The recessive lethal alleles affect up to 2.9% of the litters within a single population and are responsible for the death of 0.52% of the total population of embryos. Moreover, we provide compelling evidence that the identified embryonic lethal alleles contribute to the observed heterosis effect for fertility (i.e. larger litters in crossbred offspring). Together, this work marks specific recessive lethal variation describing its functional consequences at the molecular, phenotypic, and population level, providing a unique model to better understand fertility and heterosis in livestock.


Asunto(s)
Genes Letales , Mutación con Pérdida de Función , Sus scrofa/embriología , Sus scrofa/genética , Secuencia de Aminoácidos , Animales , Femenino , Fertilidad/genética , Genes Recesivos , Flujo Genético , Genética de Población , Haplotipos , Vigor Híbrido/genética , Hibridación Genética/genética , Tamaño de la Camada/genética , Masculino , Embarazo , ARN Polimerasa I/genética , Análisis de Secuencia de ARN , Secuenciación Completa del Genoma
15.
Proc Natl Acad Sci U S A ; 116(35): 17231-17238, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31405970

RESUMEN

Archaeological evidence indicates that pig domestication had begun by ∼10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ∼8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local European wild boars, although it is also possible that European wild boars were domesticated independently without any genetic contribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process.


Asunto(s)
ADN Antiguo , ADN Mitocondrial/genética , Domesticación , Flujo Génico , Filogenia , Porcinos/genética , Animales , Europa (Continente) , Historia Antigua , Medio Oriente , Pigmentación de la Piel/genética
16.
Genomics ; 113(5): 3092-3102, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34242710

RESUMEN

Structural variations (SVs) are an important source of phenotypic diversity in cattle. Here, 72 whole genome sequences representing taurine and zebu cattle were used to identify SVs. Applying multiple approaches, 16,738 SVs were identified. A comparison against the Database of Genomic Variants archives revealed that 1575 SVs were novel in our data. A novel duplication covering the entire GALNT15 gene, was observed only in N'Dama. A duplication, which was previously reported only in zebu and associated with navel length, was also observed in N'Dama. Investigation of a novel deletion located upstream of CAST13 gene and identified only in Italian cattle and zebu, revealed its introgressed origin in the former. Overall, our data highlights how the SVs distribution in cattle is also shaped by forces such as demographical differences and gene flow. The cattle SVs of this study and its meta-data can be visualized on an interactive genome browser at https://tinyurl.com/svCowArs.


Asunto(s)
Enfermedades de los Bovinos , Animales , Bovinos/genética , Enfermedades de los Bovinos/genética , Genoma , Genómica
17.
Genomics ; 113(4): 2229-2239, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34022350

RESUMEN

The genotype-phenotype link is a major research topic in the life sciences but remains highly complex to disentangle. Part of the complexity arises from the number of genes contributing to the observed phenotype. Despite the vast increase of molecular data, pinpointing the causal variant underlying a phenotype of interest is still challenging. In this study, we present an approach to map causal variation and molecular pathways underlying important phenotypes in pigs. We prioritize variation by utilizing and integrating predicted variant impact scores (pCADD), functional genomic information, and associated phenotypes in other mammalian species. We demonstrate the efficacy of our approach by reporting known and novel causal variants, of which many affect non-coding sequences. Our approach allows the disentangling of the biology behind important phenotypes by accelerating the discovery of novel causal variants and molecular mechanisms affecting important phenotypes in pigs. This information on molecular mechanisms could be applicable in other mammalian species, including humans.


Asunto(s)
Variación Genética , Genómica , Animales , Genotipo , Mamíferos , Fenotipo , Porcinos/genética
18.
J Anim Breed Genet ; 139(5): 556-573, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35579203

RESUMEN

In the past 50 years, there has been a steep increase in the demand for poultry products, met by increasing production along with genetic selection for improved growth, efficiency, health and reproduction. The selection tends to reduce the number and type of genetic resources contributing to the majority of production. The University of Alberta maintains 10 heritage chicken lines (Brown Leghorn (BL), Light Sussex (LS), New Hampshire (NH), Saskatchewan Barred Rock (SaskBR), Shaver Barred Rock (ShaverBR), Shaver Rhode Island Red (RIR), White Leghorn (WL) and three commercial crosses called Alberta Meat Control strains 1957 (AMC-1957), 1978 sire line (AMC-1978-20S) and 1978 dam line (AMC-1978-30D), that played a large role in the evolution of the poultry industry in Canada. Since these lines have not been subjected to the same intensive selection pressures as commercial counterparts, they may contain unique genetic variants lost in commercial lines. Thus, for conservation management of these lines, the first step is to assess their genetic diversity. 71 male samples from across 10 lines were analysed using whole-genome sequencing and patterns of genetic diversity and relatedness among these lines were explored. AMC-1978-30D showed the highest genetic diversity as reflected in observed and expected heterozygosity (0.327 and 0.250), percentage of polymorphic markers (~ 65%) and average recent inbreeding coefficient (-0.039), followed by AMC-1978-20S and AMC-1957. BL showed the lowest genetic diversity as reflected in observed and expected heterozygosity (0.130 and 0.116), percentage of polymorphic markers (~31%) and average recent inbreeding coefficient (0.577), followed by LS, WL and NH. Our findings highlight the need for special attention for the populations of BL, WL, LS and NH, with the largest levels of inbreeding. Our results can be used to develop a breeding strategy to optimize and conserve the genetic variation present in heritage lines.


Asunto(s)
Pollos , Variación Genética , Animales , Canadá , Pollos/genética , Genoma , Genómica , Masculino
19.
BMC Genomics ; 22(1): 426, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107887

RESUMEN

BACKGROUND: Tilapia is one of the most abundant species in aquaculture. Hypoxia is known to depress growth rate, but the genetic mechanism by which this occurs is unknown. In this study, two groups consisting of 3140 fish that were raised in either aerated (normoxia) or non-aerated pond (nocturnal hypoxia). During grow out, fish were sampled five times to determine individual body weight (BW) gains. We applied a genome-wide association study to identify SNPs and genes associated with the hypoxic and normoxic environments in the 16th generation of a Genetically Improved Farmed Tilapia population. RESULTS: In the hypoxic environment, 36 SNPs associated with at least one of the five body weight measurements (BW1 till BW5), of which six, located between 19.48 Mb and 21.04 Mb on Linkage group (LG) 8, were significant for body weight in the early growth stage (BW1 to BW2). Further significant associations were found for BW in the later growth stage (BW3 to BW5), located on LG1 and LG8. Analysis of genes within the candidate genomic region suggested that MAPK and VEGF signalling were significantly involved in the later growth stage under the hypoxic environment. Well-known hypoxia-regulated genes such as igf1rb, rora, efna3 and aurk were also associated with growth in the later stage in the hypoxic environment. Conversely, 13 linkage groups containing 29 unique significant and suggestive SNPs were found across the whole growth period under the normoxic environment. A meta-analysis showed that 33 SNPs were significantly associated with BW across the two environments, indicating a shared effect independent of hypoxic or normoxic environment. Functional pathways were involved in nervous system development and organ growth in the early stage, and oocyte maturation in the later stage. CONCLUSIONS: There are clear genotype-growth associations in both normoxic and hypoxic environments, although genome architecture involved changed over the growing period, indicating a transition in metabolism along the way. The involvement of pathways important in hypoxia especially at the later growth stage indicates a genotype-by-environment interaction, in which MAPK and VEGF signalling are important components.


Asunto(s)
Cíclidos , Estudio de Asociación del Genoma Completo , Animales , Cíclidos/genética , Ligamiento Genético , Genotipo , Oxígeno
20.
Mol Biol Evol ; 37(5): 1376-1386, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31960923

RESUMEN

The evolution of a placenta is predicted to be accompanied by rapid evolution of genes involved in processes that regulate mother-offspring interactions during pregnancy, such as placenta formation, embryonic development, and nutrient transfer to offspring. However, these predictions have only been tested in mammalian species, where only a single instance of placenta evolution has occurred. In this light, the genus Poeciliopsis is a particularly interesting model for placenta evolution, because in this genus a placenta has evolved independently from the mammalian placenta. Here, we present and compare genome assemblies of two species of the livebearing fish genus Poeciliopsis (family Poeciliidae) that differ in their reproductive strategy: Poeciliopsis retropinna which has a well-developed complex placenta and P. turrubarensis which lacks a placenta. We applied different assembly strategies for each species: PacBio sequencing for P. retropinna (622-Mb assembly, scaffold N50 of 21.6 Mb) and 10× Genomics Chromium technology for P. turrubarensis (597-Mb assembly, scaffold N50 of 4.2 Mb). Using the high contiguity of these genome assemblies and near-completeness of gene annotations to our advantage, we searched for gene duplications and performed a genome-wide scan for genes evolving under positive selection. We find rapid evolution in major parts of several molecular pathways involved in parent-offspring interaction in P. retropinna, both in the form of gene duplications as well as positive selection. We conclude that the evolution of the placenta in the genus Poeciliopsis is accompanied by rapid evolution of genes involved in similar genomic pathways as found in mammals.


Asunto(s)
Ciprinodontiformes/genética , Genoma , Rasgos de la Historia de Vida , Selección Genética , Viviparidad de Animales no Mamíferos/genética , Animales , Femenino , Duplicación de Gen , Masculino , Placenta , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA