RESUMEN
Most T lymphocytes, including regulatory T cells (Treg cells), differentiate in the thymus. The age-dependent involution of this organ leads to decreasing production of T cells. Here we found that the output of new Treg cells from the thymus decreased substantially more than that of conventional T cells. Peripheral mouse and human Treg cells recirculated back to the thymus, where they constituted a large proportion of the pool of Treg cells and displayed an activated and differentiated phenotype. In the thymus, the recirculating cells exerted their regulatory function by inhibiting interleukin 2 (IL-2)-dependent de novo differentiation of Treg cells. Thus, Treg cell development is controlled by a negative feedback loop in which mature progeny cells return to the thymus and restrain development of precursors of Treg cells.
Asunto(s)
Células Precursoras de Linfocitos T/fisiología , Subgrupos de Linfocitos T/fisiología , Linfocitos T Reguladores/fisiología , Timo/inmunología , Envejecimiento/inmunología , Animales , Circulación Sanguínea , Diferenciación Celular/genética , Células Cultivadas , Niño , Retroalimentación Fisiológica , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Tolerancia Inmunológica , Interleucina-2/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones TransgénicosAsunto(s)
VIH-1/inmunología , Neoplasias , Células Dendríticas , Humanos , Metilación , ARN Mensajero , Proteínas de Unión al ARNRESUMEN
The gut microbiota plays a crucial role in the maturation of the intestinal mucosal immune system of its host. Within the thousand bacterial species present in the intestine, the symbiont segmented filamentous bacterium (SFB) is unique in its ability to potently stimulate the post-natal maturation of the B- and T-cell compartments and induce a striking increase in the small-intestinal Th17 responses. Unlike other commensals, SFB intimately attaches to absorptive epithelial cells in the ileum and cells overlying Peyer's patches. This colonization does not result in pathology; rather, it protects the host from pathogens. Yet, little is known about the SFB-host interaction that underlies the important immunostimulatory properties of SFB, because SFB have resisted in vitro culturing for more than 50 years. Here we grow mouse SFB outside their host in an SFB-host cell co-culturing system. Single-celled SFB isolated from monocolonized mice undergo filamentation, segmentation, and differentiation to release viable infectious particles, the intracellular offspring, which can colonize mice to induce signature immune responses. In vitro, intracellular offspring can attach to mouse and human host cells and recruit actin. In addition, SFB can potently stimulate the upregulation of host innate defence genes, inflammatory cytokines, and chemokines. In vitro culturing thereby mimics the in vivo niche, provides new insights into SFB growth requirements and their immunostimulatory potential, and makes possible the investigation of the complex developmental stages of SFB and the detailed dissection of the unique SFB-host interaction at the cellular and molecular levels.
Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/inmunología , Técnicas de Cocultivo/métodos , Intestinos/inmunología , Intestinos/microbiología , Linfocitos/inmunología , Simbiosis/inmunología , Actinas/metabolismo , Animales , Bacterias/citología , Línea Celular , Escherichia coli/citología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/inmunología , Heces/microbiología , Femenino , Vida Libre de Gérmenes , Humanos , Inmunidad Mucosa/inmunología , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Intestinos/citología , Linfocitos/citología , Masculino , Ratones , Viabilidad Microbiana , Ganglios Linfáticos Agregados/inmunología , Células Th17/inmunologíaRESUMEN
Oncogenesis often implicates epigenetic alterations, including derepression of transposable elements (TEs) and defects in alternative splicing. Here, we explore the possibility that noncanonical splice junctions between exons and TEs represent a source of tumor-specific antigens. We show that mouse normal tissues and tumor cell lines express wide but distinct ranges of mRNA junctions between exons and TEs, some of which are tumor specific. Immunopeptidome analyses in tumor cell lines identified peptides derived from exon-TE splicing junctions associated to MHC-I molecules. Exon-TE junction-derived peptides were immunogenic in tumor-bearing mice. Both prophylactic and therapeutic vaccinations with junction-derived peptides delayed tumor growth in vivo. Inactivation of the TE-silencing histone 3-lysine 9 methyltransferase Setdb1 caused overexpression of new immunogenic junctions in tumor cells. Our results identify exon-TE splicing junctions as epigenetically controlled, immunogenic, and protective tumor antigens in mice, opening possibilities for tumor targeting and vaccination in patients with cancer.
Asunto(s)
Antígenos de Neoplasias , Elementos Transponibles de ADN , Animales , Ratones , Elementos Transponibles de ADN/genética , Antígenos de Neoplasias/genética , Exones/genética , ARN Mensajero , Línea Celular TumoralRESUMEN
Despite its crucial role in initiation of cytotoxic immune responses, the molecular pathways underlying antigen cross-presentation remain incompletely understood. The mechanism of antigen exit from endocytic compartments into the cytosol is a long-standing matter of controversy, confronting two main models: transfer through specific channels/transporters or rupture of endocytic membranes and leakage of luminal content. By monitoring the occurrence of intracellular damage in conventional dendritic cells (cDCs), we show that cross-presenting cDC1s display more frequent endomembrane injuries and increased recruitment of endosomal sorting complex required for transport (ESCRT)-III, the main repair system for intracellular membranes, relative to cDC2s. Silencing of CHMP2a or CHMP4b, two effector subunits of ESCRT-III, enhances cytosolic antigen export and cross-presentation. This phenotype is partially reversed by chemical inhibition of RIPK3, suggesting that endocytic damage is related to basal activation of the necroptosis pathway. Membrane repair therefore proves crucial in containing antigen export to the cytosol and cross-presentation in cDCs.
Asunto(s)
Reactividad Cruzada , Complejos de Clasificación Endosomal Requeridos para el Transporte , Presentación de Antígeno , Antígenos/metabolismo , Citosol/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismoRESUMEN
Cross-presentation of antigens by dendritic cells (DCs) is critical for initiation of anti-tumor immune responses. Yet, key steps involved in trafficking of antigens taken up by DCs remain incompletely understood. Here, we screen 700 US Food and Drug Administration (FDA)-approved drugs and identify 37 enhancers of antigen import from endolysosomes into the cytosol. To reveal their mechanism of action, we generate proteomic organellar maps of control and drug-treated DCs (focusing on two compounds, prazosin and tamoxifen). By combining organellar mapping, quantitative proteomics, and microscopy, we conclude that import enhancers undergo lysosomal trapping leading to membrane permeation and antigen release. Enhancing antigen import facilitates cross-presentation of soluble and cell-associated antigens. Systemic administration of prazosin leads to reduced growth of MC38 tumors and to a synergistic effect with checkpoint immunotherapy in a melanoma model. Thus, inefficient antigen import into the cytosol limits antigen cross-presentation, restraining the potency of anti-tumor immune responses and efficacy of checkpoint blockers.
Asunto(s)
Antineoplásicos/farmacología , Citosol/metabolismo , Endosomas/metabolismo , Inmunidad , Neoplasias/inmunología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antígenos/metabolismo , Transporte Biológico/efectos de los fármacos , Reactividad Cruzada/efectos de los fármacos , Citosol/efectos de los fármacos , Células Dendríticas/metabolismo , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Endosomas/efectos de los fármacos , Inmunidad/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/tratamiento farmacológico , Permeabilidad , Prazosina/farmacología , Quinazolinas/farmacología , Tamoxifeno/farmacología , beta-Lactamasas/metabolismoRESUMEN
Cross-priming refers to the induction of primary cytotoxic CD8+ T cell responses to antigens that are not expressed in antigen presenting cells (APCs) responsible for T cell priming. Cross-priming is achieved through cross-presentation of exogenous antigens derived from tumors, extracellular pathogens or infected neighboring cells on Major Histocompatibility Complex (MHC) class I molecules. Despite extensive research efforts to understand the intracellular pathways involved in antigen cross-presentation, certain critical steps remain elusive and controversial. Here we review recent advances on antigen cross-presentation, focusing on the mechanisms involved in antigen export to the cytosol, a crucial step of this pathway.