Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Arch Toxicol ; 89(12): 2253-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25319728

RESUMEN

Soy isoflavones (IF) are phytoestrogens, which interact with estrogen receptors. They are extensively metabolized by glucuronosyltransferases and sulfotransferases, leading to the modulation of their estrogenic activity. It can be assumed that this biotransformation also has a crucial impact on the uptake of IF by active or passive cellular transport mechanisms, but little is known about the transport of IF phase II metabolites into the cell. Therefore, transport assays for phase II metabolites of daidzein (DAI) were carried out using HEK293 cell lines transfected with five human candidate carriers, i.e., organic anion transporter OAT4, sodium-dependent organic anion transporter (SOAT), Na(+)-taurocholate cotransporting polypeptide (NTCP), apical sodium-dependent bile acid transporter ASBT, and organic anion transporting polypeptide OATP2B1. Cellular uptake was monitored by UHPLC-DAD. DAI monosulfates were transported by the carriers NTCP and SOAT in a sodium-dependent manner, while OAT4-HEK293 cells revealed a partly sodium-dependent transport for these compounds. In contrast, DAI-7,4'-disulfate was only taken up by NTCP-HEK293 cells. DAI-7-glucuronide, but not DAI-4'-glucuronide, was transported exclusively by OATP2B1 in a sodium-independent manner. DAI-7-glucuronide-4'-sulfate, DAI-7-glucoside, and DAI were no substrate of any of the tested carriers. In addition, the inhibitory potency of the DAI metabolites toward estrone-sulfate (E1S) uptake of the above-mentioned carriers was determined. In conclusion, human SOAT, NTCP, OATP2B1, and OAT4 were identified as carriers for the DAI metabolites. Several metabolites were able to inhibit carrier-dependent E1S uptake. These findings might contribute to a better understanding of the bioactivity of IF especially in case of hormone-related cancers.


Asunto(s)
Isoflavonas/farmacocinética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Fitoestrógenos/farmacocinética , Simportadores/metabolismo , Transporte Biológico , Cromatografía Líquida de Alta Presión/métodos , Células HEK293 , Humanos , Isoflavonas/metabolismo , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Esterol O-Aciltransferasa/metabolismo
2.
Front Mol Biosci ; 8: 689757, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079822

RESUMEN

Three carriers of the solute carrier family SLC10 have been functionally characterized so far. Na+/taurocholate cotransporting polypeptide NTCP is a hepatic bile acid transporter and the cellular entry receptor for the hepatitis B and D viruses. Its intestinal counterpart, apical sodium-dependent bile acid transporter ASBT, is responsible for the reabsorption of bile acids from the intestinal lumen. In addition, sodium-dependent organic anion transporter SOAT specifically transports sulfated steroid hormones, but not bile acids. All three carriers show high sequence homology, but significant differences in substrate recognition that makes a systematic structure-activity comparison attractive in order to define the protein domains involved in substrate binding and transport. By using stably transfected NTCP-, ASBT-, and SOAT-HEK293 cells, systematic comparative transport and inhibition experiments were performed with more than 20 bile acid and steroid substrates as well as different inhibitors. Taurolithocholic acid (TLC) was identified as the first common substrate of NTCP, ASBT and SOAT with K m values of 18.4, 5.9, and 19.3 µM, respectively. In contrast, lithocholic acid was the only bile acid that was not transported by any of these carriers. Troglitazone, BSP and erythrosine B were identified as pan-SLC10 inhibitors, whereas cyclosporine A, irbesartan, ginkgolic acid 17:1, and betulinic acid only inhibited NTCP and SOAT, but not ASBT. The HBV/HDV-derived myr-preS1 peptide showed equipotent inhibition of the NTCP-mediated substrate transport of taurocholic acid (TC), dehydroepiandrosterone sulfate (DHEAS), and TLC with IC50 values of 182 nM, 167 nM, and 316 nM, respectively. In contrast, TLC was more potent to inhibit myr-preS1 peptide binding to NTCP with IC50 of 4.3 µM compared to TC (IC50 = 70.4 µM) and DHEAS (IC50 = 52.0 µM). Based on the data of the present study, we propose several overlapping, but differently active binding sites for substrates and inhibitors in the carriers NTCP, ASBT, SOAT.

3.
Artículo en Inglés | MEDLINE | ID: mdl-32435230

RESUMEN

Introduction: An increase of serum dehydroepiandrosterone (DHEA) sulfate (DHEAS) is observed in premature adrenarche and congenital adrenal hyperplasia. Very high DHEAS levels are typical for adrenal tumors. Approximately 74% of DHEAS is hydrolyzed to DHEA by the steroid sulfatase (STS). The reverse reaction is DHEA sulfation. Besides these two enzyme reactions, the DHEAS transported through the cell membrane is important for its distribution and excretion. Case Presentation: We present a female adolescent with overweight and a very high DHEAS. The presence of a DHEAS-producing tumor was rejected using ultrasonography, Magnetic Resonance Tomography (MRT), and dexamethasone suppression. STS deficiency was suspected. Sequence analysis revealed a heterozygous nonsense mutation which predicts a truncation of the carboxyl region of the STS that is implicated in substrate binding. No partial gene deletion outside exon 5 was detected by multiplex ligation-dependent probe amplification. The bioassay revealed normal enzyme activity in the patient's leukocytes. A defect of transporter proteins was suggested. Both efflux [multidrug-resistance protein (MRP)2 and breast cancer-resistance protein (BCRP)] and uptake [organic anion-transporting polypeptide (OATP) and organic anion transporter (OAT) carriers] transporters were studied. Sequence analysis of exons revealed a heterozygous Q141K variant for BCRP. Conclusions: A novel heterozygous nonsense mutation in the STS gene and a known heterozygous missense variant in the BCRP gene were found. The heterozygous nonsense mutation in the STS gene is not supposed to be responsible for STS deficiency. The BCRP variant is associated with reduced efflux transport activity only in its homozygous state. The combination of the two heterozygous mutations could possibly explain the observed high levels of DHEAS and other sulfated steroids.


Asunto(s)
Codón sin Sentido , Sulfato de Deshidroepiandrosterona/sangre , Obesidad Infantil/patología , Esteril-Sulfatasa/genética , Adolescente , Estudios de Casos y Controles , Femenino , Humanos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Obesidad Infantil/sangre , Obesidad Infantil/genética , Pronóstico , Adulto Joven
4.
J Steroid Biochem Mol Biol ; 179: 20-25, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28951227

RESUMEN

The sodium-dependent organic anion transporter SOAT/Soat shows highly specific transport activity for sulfated steroids. SOAT substrates identified so far include dehydroepiandrosterone sulfate, 16α-hydroxydehydroepiandrosterone sulfate, estrone-3-sulfate, pregnenolone sulfate, 17ß-estradiol-3-sulfate, and androstenediol sulfate. Apart from these compounds, many other sulfated steroids occur in mammals. Therefore, we aimed to expand the substrate spectrum of SOAT and analyzed the SOAT-mediated transport of eight different sulfated steroids by combining in vitro transport experiments in SOAT-transfected HEK293 cells with LC-MS/MS analytics of cell lysates. In addition, we aimed to better understand the structural requirements for SOAT substrates and so selected structural pairs varying only at specific positions: 3α/3ß-sulfate, 17α/17ß-sulfate, mono-sulfate/di-sulfate, and 17α-hydroxylation. We found significant and sodium-dependent SOAT-mediated transport of 17α-hydroxypregnenolone sulfate, 17ß-estradiol-17-sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and 5α-dihydrotestosterone sulfate. However, 17ß-estradiol-3,17-disulfate was not transported by SOAT. IN CONCLUSION: SOAT substrates from the group of sulfated steroids are characterized by a planar and lipophilic steroid backbone in trans-trans-trans conformation of the rings and a negatively charged mono-sulfate group at positions 3' or 17' with flexibility for α- or ß- orientation. Furthermore, 5α-reduction, 16α-hydroxylation, and 17α-hydroxylation are acceptable for SOAT substrate recognition, whereas addition of a second negatively charged sulfate group seems to abolish substrate binding to SOAT, and so 17ß-estradiol-3,17-disulfate is not transported by SOAT.


Asunto(s)
Transportadores de Anión Orgánico/metabolismo , Esteroides/química , Esteroides/metabolismo , Androsterona/análogos & derivados , Androsterona/química , Androsterona/metabolismo , Transporte Biológico , Dihidrotestosterona/química , Dihidrotestosterona/metabolismo , Estradiol/análogos & derivados , Estradiol/química , Estradiol/metabolismo , Células HEK293 , Humanos , Hidroxilación , Transportadores de Anión Orgánico/química , Relación Estructura-Actividad , Testosterona/química , Testosterona/metabolismo
5.
Front Pharmacol ; 9: 941, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186172

RESUMEN

Estrogens play a pivotal role in the development and proliferation of hormone-dependent breast cancer. Apart from free estrogens, which can directly activate the estrogen receptor (ER) of tumor cells, sulfo-conjugated steroids, which maintain high plasma concentrations even after menopause, first have to be imported into tumor cells by carrier-mediated uptake and then can be cleaved by the steroid sulfatase to finally activate ERs and cell proliferation. In the present study, expression of the sodium-dependent organic anion transporter SOAT was analyzed in breast cancer and its role for hormone-dependent proliferation of T47D breast cancer cells was elucidated. The SOAT protein was localized to the ductal epithelium of the mammary gland by immunohistochemistry. SOAT showed high expression in different pathologies of the breast with a clear ductal localization, including ductal hyperplasia, intraductal papilloma, and intraductal carcinoma. In a larger breast cancer cDNA array, SOAT mRNA expression was high in almost all adenocarcinoma specimen, but expression did not correlate with either the ER, progesterone receptor, or human epidermal growth factor receptor 2 status. Furthermore, SOAT expression did not correlate with tumor stage or grade, indicating widespread SOAT expression in breast cancer. To analyze the role of SOAT for breast cancer cell proliferation, T47D cells were stably transfected with SOAT and incubated under increasing concentrations of estrone-3-sulfate (E1S) and estradiol at physiologically relevant concentrations. Cell proliferation was significantly increased by 10-9 M estradiol as well as by E1S with EC50 of 2.2 nM. In contrast, T47D control cells showed 10-fold lower sensitivity to E1S stimulation with EC50 of 21.7 nM. The E1S-stimulated proliferation of SOAT-T47D cells was blocked by the SOAT inhibitor 4-sulfooxymethylpyrene. IN CONCLUSION: The present study clearly demonstrates expression of SOAT in breast cancer tissue with ductal localization. SOAT inhibition can block the E1S-stimulated proliferation of T47D breast cancer cells, demonstrating that SOAT is an interesting novel drug target from the group of E1S uptake carriers for anti-proliferative breast cancer therapy.

6.
J Steroid Biochem Mol Biol ; 172: 207-221, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27392637

RESUMEN

Sulfated steroid hormones, such as dehydroepiandrosterone sulfate or estrone-3-sulfate, have long been regarded as inactive metabolites as they cannot activate classical steroid receptors. Some of them are present in the blood circulation at quite high concentrations, but generally sulfated steroids exhibit low membrane permeation due to their hydrophilic properties. However, sulfated steroid hormones can actively be imported into specific target cells via uptake carriers, such as the sodium-dependent organic anion transporter SOAT, and, after hydrolysis by the steroid sulfatase (so-called sulfatase pathway), contribute to the overall regulation of steroid responsive organs. To investigate the biological significance of sulfated steroid hormones for reproductive processes in humans and animals, the research group "Sulfated Steroids in Reproduction" was established by the German Research Foundation DFG (FOR1369). Projects of this group deal with transport of sulfated steroids, sulfation of free steroids, desulfation by the steroid sulfatase, effects of sulfated steroids on steroid biosynthesis and membrane receptors as well as MS-based profiling of sulfated steroids in biological samples. This review and concept paper presents key findings from all these projects and provides a broad overview over the current research on sulfated steroid hormones in the field of reproduction.


Asunto(s)
Sulfato de Deshidroepiandrosterona/metabolismo , Estrona/análogos & derivados , Ictiosis Ligada al Cromosoma X/metabolismo , Reproducción/genética , Esterol O-Aciltransferasa/metabolismo , Esteril-Sulfatasa/metabolismo , Animales , Transporte Biológico , Bovinos , Estrona/metabolismo , Femenino , Expresión Génica , Humanos , Hidroxicolesteroles/metabolismo , Ictiosis Ligada al Cromosoma X/genética , Ictiosis Ligada al Cromosoma X/patología , Masculino , Oocitos/citología , Oocitos/metabolismo , Placenta/citología , Placenta/metabolismo , Embarazo , Esterol O-Aciltransferasa/genética , Esteril-Sulfatasa/genética , Porcinos
7.
Mol Cell Endocrinol ; 428: 133-41, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27033324

RESUMEN

The sodium-dependent organic anion transporter SOAT specifically transports sulfated steroid hormones and is supposed to play a role in testicular steroid regulation and male fertility. The present study aimed to identify novel specific SOAT inhibitors for further in vitro and in vivo studies on SOAT function. More than 100 compounds of different molecular structures were screened for inhibition of the SOAT-mediated transport of dehydroepiandrosterone sulfate in stably transfected SOAT-HEK293 cells. Twenty-five of these with IC50 values covering four orders of magnitude were selected as training set for 3D pharmacophore modelling. The SOAT pharmacophore features were calculated by CATALYST and consist of three hydrophobic sites and two hydrogen bond acceptors. By substrate database screening, compound T 0511-1698 was predicted as a novel SOAT inhibitor with an IC50 of 15 µM. This value was confirmed by cell-based transport assays. Therefore, the developed SOAT pharmacophore model demonstrated its suitability in predicting novel SOAT inhibitors.


Asunto(s)
Sulfato de Deshidroepiandrosterona/metabolismo , Evaluación Preclínica de Medicamentos , Modelos Moleculares , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/química , Relación Estructura-Actividad Cuantitativa , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/farmacología , Células HEK293 , Humanos , Concentración 50 Inhibidora , Reproducibilidad de los Resultados
8.
J Steroid Biochem Mol Biol ; 138: 90-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23562556

RESUMEN

The sodium-dependent organic anion transporter SOAT is a member of the Solute Carrier Family SLC10. In man, this carrier is predominantly expressed in the testis and has transport activity for sulfoconjugated steroid hormones. Here, we report on cloning, expression analysis and functional characterization of the mouse Soat (mSoat) and compare its characteristics with the human SOAT carrier. Quantitative mRNA expression analysis for mSoat in male mice revealed very high expression in lung and further high expression in testis and skin. Immunohistochemical studies showed expression of the mSoat protein in bronchial epithelial cells of the lung, in primary and secondary spermatocytes as well as round spermatids within the seminiferous tubules of the testis, in the epidermis of the skin, and in the urinary epithelium of the bladder. Stably transfected mSoat-HEK293 cells revealed sodium-dependent transport for dehydroepiandrosterone sulfate (DHEAS), estrone-3-sulfate, and pregnenolone sulfate (PREGS) with apparent Km values of 60.3µM, 2.1µM, and 2.5µM, respectively. In contrast to human SOAT, which has a preference for DHEAS as a substrate, mSoat exhibits the highest transport rate for PREGS, likely reflecting differences in the steroid pattern between both species. In conclusion, although certain differences between human SOAT and mSoat exist regarding quantitative gene expression in endocrine and non-endocrine tissues, as well as in the transport kinetics for steroid sulfates, in general, both can be regarded as homologous carriers.


Asunto(s)
Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Animales , Western Blotting , Línea Celular , Clonación Molecular , Técnica del Anticuerpo Fluorescente , Hormonas Esteroides Gonadales/metabolismo , Humanos , Inmunohistoquímica , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Pregnenolona/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/metabolismo , Testículo/metabolismo , Vejiga Urinaria/metabolismo
9.
PLoS One ; 8(5): e62638, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667501

RESUMEN

Sulfated steroid hormones are commonly considered to be biologically inactive metabolites, but may be reactivated by the steroid sulfatase into biologically active free steroids, thereby having regulatory function via nuclear androgen and estrogen receptors which are widespread in the testis. However, a prerequisite for this mode of action would be a carrier-mediated import of the hydrophilic steroid sulfate molecules into specific target cells in reproductive tissues such as the testis. In the present study we detected predominant expression of the Sodium-dependent Organic Anion Transporter (SOAT), the Organic Anion Transporting Polypeptide 6A1, and the Organic Solute Carrier Partner 1 in human testis biopsies. All of these showed significantly lower or even absent mRNA expression in severe disorders of spermatogenesis (arrest at the level of spermatocytes or spermatogonia, Sertoli cell only syndrome). Only SOAT was significantly lower expressed in biopsies showing hypospermatogenesis. By use of immunohistochemistry SOAT was localized to germ cells at various stages in human testis biopsies showing normal spermatogenesis. SOAT immunoreactivity was detected in zygotene primary spermatocytes of stage V, pachytene spermatocytes of all stages (I-V), secondary spermatocytes of stage VI, and round spermatids (step 1 and step 2) in stages I and II. Furthermore, SOAT transport function for steroid sulfates was analyzed with a novel liquid chromatography tandem mass spectrometry procedure capable of profiling steroid sulfate molecules from cell lysates. With this technique, the cellular inward-directed SOAT transport was verified for the established substrates dehydroepiandrosterone sulfate and estrone-3-sulfate. Additionally, ß-estradiol-3-sulfate and androstenediol-3-sulfate were identified as novel SOAT substrates.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Oligospermia/metabolismo , Transportadores de Anión Orgánico/metabolismo , Esteroides/metabolismo , Testículo/metabolismo , Western Blotting , Cromatografía Liquida , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Inmunohistoquímica , Hibridación in Situ , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Sulfatos/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA