Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 102(3): 494-504, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29478781

RESUMEN

ATP synthase, H+ transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F1FO ATP synthase and subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.


Asunto(s)
Alelos , Enfermedades Metabólicas/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación/genética , Subunidades de Proteína/genética , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Mutación con Pérdida de Función/genética , Masculino , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/química , Subunidades de Proteína/química
2.
Genet Med ; 23(12): 2415-2425, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34400813

RESUMEN

PURPOSE: Biallelic hypomorphic variants in PPA2, encoding the mitochondrial inorganic pyrophosphatase 2 protein, have been recently identified in individuals presenting with sudden cardiac death, occasionally triggered by alcohol intake or a viral infection. Here we report 20 new families harboring PPA2 variants. METHODS: Synthesis of clinical and molecular data concerning 34 individuals harboring five previously reported PPA2 variants and 12 novel variants, 11 of which were functionally characterized. RESULTS: Among the 34 individuals, only 6 remain alive. Twenty-three died before the age of 2 years while five died between 14 and 16 years. Within these 28 cases, 15 died of sudden cardiac arrest and 13 of acute heart failure. One case was diagnosed prenatally with cardiomyopathy. Four teenagers drank alcohol before sudden cardiac arrest. Progressive neurological signs were observed in 2/6 surviving individuals. For 11 variants, recombinant PPA2 enzyme activities were significantly decreased and sensitive to temperature, compared to wild-type PPA2 enzyme activity. CONCLUSION: We expand the clinical and mutational spectrum associated with PPA2 dysfunction. Heart failure and sudden cardiac arrest occur at various ages with inter- and intrafamilial phenotypic variability, and presentation can include progressive neurological disease. Alcohol intake can trigger cardiac arrest and should be strictly avoided.


Asunto(s)
Cardiomiopatías , Muerte Súbita Cardíaca , Adolescente , Alelos , Cardiomiopatías/genética , Preescolar , Muerte Súbita Cardíaca/etiología , Humanos , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Proteínas Mitocondriales/genética , Mutación
4.
Am J Med Genet A ; 179(6): 966-977, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30920161

RESUMEN

Phacomatosis pigmentovascularis (PPV) comprises a family of rare conditions that feature vascular abnormalities and melanocytic lesions that can be solely cutaneous or multisystem in nature. Recently published work has demonstrated that both vascular and melanocytic abnormalities in PPV of the cesioflammea and cesiomarmorata subtypes can result from identical somatic mosaic activating mutations in the genes GNAQ and GNA11. Here, we present three new cases of PPV with features of the cesioflammea and/or cesiomarmorata subtypes and mosaic mutations in GNAQ or GNA11. To better understand the risk of potentially occult complications faced by such patients we additionally reviewed 176 cases published in the literature. We report the frequency of clinical findings, their patterns of co-occurrence as well as published recommendations for surveillance after diagnosis. Features assessed include: capillary malformation; dermal and ocular melanocytosis; glaucoma; limb asymmetry; venous malformations; and central nervous system (CNS) anomalies, such as ventriculomegaly and calcifications. We found that ocular findings are common in patients with phacomatosis cesioflammea and cesiomarmorata. Facial vascular involvement correlates with a higher risk of seizures (p = .0066). Our genetic results confirm the role of mosaic somatic mutations in GNAQ and GNA11 in phacomatosis cesioflammea and cesiomarmorata. Their clinical and molecular findings place these conditions on a clinical spectrum encompassing other GNAQ and GNA11 related disorders and inform recommendations for their management.


Asunto(s)
Síndromes Neurocutáneos/diagnóstico , Fenotipo , Alelos , Niño , Diagnóstico Diferencial , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Genotipo , Humanos , Lactante , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Masculino , Mutación , Síndromes Neurocutáneos/genética , Piel/patología , Secuenciación del Exoma
5.
J Genet Couns ; 28(2): 213-228, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30964584

RESUMEN

There are approximately 7,000 rare diseases affecting 25-30 million Americans, with 80% estimated to have a genetic basis. This presents a challenge for genetics practitioners to determine appropriate testing, make accurate diagnoses, and conduct up-to-date patient management. Exome sequencing (ES) is a comprehensive diagnostic approach, but only 25%-41% of the patients receive a molecular diagnosis. The remaining three-fifths to three-quarters of patients undergoing ES remain undiagnosed. The Stanford Center for Undiagnosed Diseases (CUD), a clinical site of the Undiagnosed Diseases Network, evaluates patients with undiagnosed and rare diseases using a combination of methods including ES. Frequently these patients have non-diagnostic ES results, but strategic follow-up techniques identify diagnoses in a subset. We present techniques used at the CUD that can be adopted by genetics providers in clinical follow-up of cases where ES is non-diagnostic. Solved case examples illustrate different types of non-diagnostic results and the additional techniques that led to a diagnosis. Frequent approaches include segregation analysis, data reanalysis, genome sequencing, additional variant identification, careful phenotype-disease correlation, confirmatory testing, and case matching. We also discuss prioritization of cases for additional analyses.


Asunto(s)
Secuenciación del Exoma , Enfermedades Raras/diagnóstico , Enfermedades no Diagnosticadas/genética , Exoma , Femenino , Estudios de Seguimiento , Humanos , Masculino , Fenotipo , Enfermedades Raras/genética , Análisis de Secuencia de ADN
6.
J Genet Couns ; 28(2): 466-476, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30706981

RESUMEN

With the wide adoption of next-generation sequencing (NGS)-based genetic tests, genetic counselors require increased familiarity with NGS technology, variant interpretation concepts, and variant assessment tools. The use of exome and genome sequencing in clinical care has expanded the reach and diversity of genetic testing. Regardless of the setting where genetic counselors are performing variant interpretation or reporting, most of them have learned these skills from colleagues, while on the job. Though traditional, lecture-based learning around these topics is important, there has been growing need for the inclusion of case-based, experiential training of genomics and variant interpretation for genetic counseling students, with the goal of creating a strong foundation in variant interpretation for new genetic counselors, regardless of what area of practice they enter. To address this need, we established a genomics and variant interpretation rotation for Stanford's genetic counseling training program. In response to changes in the genomics landscape, this has now evolved into three unique rotation experiences, each focused on variant interpretation in the context of various genomic settings, including clinical laboratory, research laboratory, and healthy genomic analysis studies. Here, we describe the goals and learning objectives that we have developed for these variant interpretation rotations, and illustrate how these concepts are applied in practice.


Asunto(s)
Consejeros/educación , Curriculum , Asesoramiento Genético , Pruebas Genéticas , Genómica/educación , Adulto , Humanos , Desarrollo de Programa , Universidades
7.
Genet Med ; 20(3): 369-373, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29240077

RESUMEN

PurposeTo describe the frequency and nature of differences in variant classifications between clinicians and genetic testing laboratories.MethodsRetrospective review of variants identified through genetic testing ordered in routine clinical care by clinicians in the Stanford Center for Inherited Cardiovascular Disease. We compared classifications made by clinicians, the testing laboratory, and other laboratories in ClinVar.ResultsOf 688 laboratory classifications, 124 (18%) differed from the clinicians' classifications. Most differences in classification would probably affect clinical care of the patient and/or family (83%, 103/124). The frequency of discordant classifications differed depending on the testing laboratory (P < 0.0001) and the testing laboratory's classification (P < 0.00001). For the majority (82/124, 66%) of discordant classifications, clinicians were more conservative (less likely to classify a variant pathogenic or likely pathogenic). The clinicians' classification was discordant with one or more submitter in ClinVar in 49.1% (28/57) of cases, while the testing laboratory's classification was discordant with a ClinVar submitter in 82.5% of cases (47/57, P = 0.0002).ConclusionThe clinical team disagreed with the laboratory's classification at a rate similar to that of reported disagreements between laboratories. Most of this discordance was clinically significant, with clinicians tending to be more conservative than laboratories in their classifications.


Asunto(s)
Variación Genética , Genética Médica/normas , Laboratorios , Anotación de Secuencia Molecular/normas , Médicos , Alelos , Estudios de Asociación Genética/métodos , Estudios de Asociación Genética/normas , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Genética Médica/métodos , Humanos
8.
J Genet Couns ; 27(4): 751-760, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29234989

RESUMEN

We sought to delineate the genetic test review and interpretation practices of clinical cardiovascular genetic counselors. A one-time anonymous online survey was taken by 46 clinical cardiovascular genetic counselors recruited through the National Society of Genetic Counselors Cardiovascular Special Interest Group. Nearly all (95.7%) gather additional information on variants reported on clinical genetic test reports and most (81.4%) assess the classification of such variants. Clinical cardiovascular genetic counselors typically (81.0%) classify variants in collaboration with cardiologist and/or geneticist colleagues, with the genetic counselor as the team member who is primarily responsible. Variant classification is a relatively recent (mean 3.2 years) addition to practice. Most genetic counselors learned classification skills on the job from clinical and laboratory colleagues. Recent graduates were more likely to have learned this in graduate school (p < 0.001). Genetic counselors are motivated to take responsibility for the classification of variants because of prior experiences with variant reclassification, inconsistencies between laboratories, and incomplete laboratory reports. They are also driven by a sense of professional duty and their proximity to the clinical context. This practice represents a broadening of the skill set of clinical cardiovascular genetic counselors and a unique expertise that they contribute to the interdisciplinary teams in which they work.


Asunto(s)
Enfermedades Cardiovasculares/genética , Consejeros/psicología , Asesoramiento Genético/métodos , Rol Profesional , Adulto , Pruebas Genéticas , Humanos , Perfil Laboral , Encuestas y Cuestionarios , Incertidumbre
9.
PLoS Genet ; 11(10): e1005496, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26448358

RESUMEN

High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework.


Asunto(s)
Arritmias Cardíacas/genética , Predisposición Genética a la Enfermedad , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Análisis de Secuencia de ADN , Arritmias Cardíacas/patología , Secuencia de Bases , Mapeo Cromosómico , Variación Genética , Genoma Humano , Genotipo , Humanos , Fenotipo
11.
J Genet Couns ; 23(4): 531-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23728783

RESUMEN

As exome and whole genome sequencing become clinically available, the potential to receive a large number of clinically relevant but incidental results is a significant challenge in the provision of genomic counseling. We conducted three focus groups of a total of 35 individuals who were members of ASHG and/or NSGC, assessing views towards the return of genomic results. Participants stressed that patient autonomy was primary. There was consensus that a mechanism to return results to the healthcare provider, rather than patient, and to streamline integration into the electronic health record would ensure these results had the maximal impact on patient management. All three focus groups agreed that pharmacogenomic results were reasonable to return and that they were not felt to be stigmatizing. With regard to the return of medically relevant results, there was much debate. Participants had difficulty in consistently assigning specific diseases to 'bins' that were considered obligatory versus optional for disclosure. Consensus was reached regarding the importance of informed consent and pretest counseling visits to clarify what the return of results process would entail. Evidence based professional guidelines should continue to be developed and regularly revised to assist in consistently and appropriately providing genomic results to patients.


Asunto(s)
Actitud del Personal de Salud , Asesoramiento Genético , Pruebas Genéticas , Genética Médica , Humanos , Recursos Humanos
12.
JAMA ; 311(10): 1035-45, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24618965

RESUMEN

IMPORTANCE: Whole-genome sequencing (WGS) is increasingly applied in clinical medicine and is expected to uncover clinically significant findings regardless of sequencing indication. OBJECTIVES: To examine coverage and concordance of clinically relevant genetic variation provided by WGS technologies; to quantitate inherited disease risk and pharmacogenomic findings in WGS data and resources required for their discovery and interpretation; and to evaluate clinical action prompted by WGS findings. DESIGN, SETTING, AND PARTICIPANTS: An exploratory study of 12 adult participants recruited at Stanford University Medical Center who underwent WGS between November 2011 and March 2012. A multidisciplinary team reviewed all potentially reportable genetic findings. Five physicians proposed initial clinical follow-up based on the genetic findings. MAIN OUTCOMES AND MEASURES: Genome coverage and sequencing platform concordance in different categories of genetic disease risk, person-hours spent curating candidate disease-risk variants, interpretation agreement between trained curators and disease genetics databases, burden of inherited disease risk and pharmacogenomic findings, and burden and interrater agreement of proposed clinical follow-up. RESULTS: Depending on sequencing platform, 10% to 19% of inherited disease genes were not covered to accepted standards for single nucleotide variant discovery. Genotype concordance was high for previously described single nucleotide genetic variants (99%-100%) but low for small insertion/deletion variants (53%-59%). Curation of 90 to 127 genetic variants in each participant required a median of 54 minutes (range, 5-223 minutes) per genetic variant, resulted in moderate classification agreement between professionals (Gross κ, 0.52; 95% CI, 0.40-0.64), and reclassified 69% of genetic variants cataloged as disease causing in mutation databases to variants of uncertain or lesser significance. Two to 6 personal disease-risk findings were discovered in each participant, including 1 frameshift deletion in the BRCA1 gene implicated in hereditary breast and ovarian cancer. Physician review of sequencing findings prompted consideration of a median of 1 to 3 initial diagnostic tests and referrals per participant, with fair interrater agreement about the suitability of WGS findings for clinical follow-up (Fleiss κ, 0.24; P < 001). CONCLUSIONS AND RELEVANCE: In this exploratory study of 12 volunteer adults, the use of WGS was associated with incomplete coverage of inherited disease genes, low reproducibility of detection of genetic variation with the highest potential clinical effects, and uncertainty about clinically reportable findings. In certain cases, WGS will identify clinically actionable genetic variants warranting early medical intervention. These issues should be considered when determining the role of WGS in clinical medicine.


Asunto(s)
Genoma Humano/genética , Mutación , Farmacogenética , Análisis de Secuencia de ADN/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Genes BRCA1 , Predisposición Genética a la Enfermedad , Variación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
13.
Clin Transl Sci ; 17(3): e13737, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38421234

RESUMEN

Pharmacogenomics has the potential to inform drug dosing and selection, reduce adverse events, and improve medication efficacy; however, provider knowledge of pharmacogenomic testing varies across provider types and specialties. Given that many actionable pharmacogenomic genes are implicated in cardiovascular medication response variability, this study aimed to evaluate cardiology providers' knowledge and attitudes on implementing clinical pharmacogenomic testing. Sixty-one providers responded to an online survey, including pharmacists (46%), physicians (31%), genetic counselors (15%), and nurses (8%). Most respondents (94%) reported previous genetics education; however, only 52% felt their genetics education prepared them to order a clinical pharmacogenomic test. In addition, most respondents (66%) were familiar with pharmacogenomics, with genetic counselors being most likely to be familiar (p < 0.001). Only 15% of respondents had previously ordered a clinical pharmacogenomic test and a total of 36% indicated they are likely to order a pharmacogenomic test in the future; however, the vast majority of respondents (89%) were interested in pharmacogenomic testing being incorporated into diagnostic cardiovascular genetic tests. Moreover, 84% of providers preferred pharmacogenomic panel testing compared to 16% who preferred single gene testing. Half of the providers reported being comfortable discussing pharmacogenomic results with their patients, but the majority (60%) expressed discomfort with the logistics of test ordering. Reported barriers to implementation included uncertainty about the clinical utility and difficulty choosing an appropriate test. Taken together, cardiology providers have moderate familiarity with pharmacogenomics and limited experience with test ordering; however, they are interested in incorporating pharmacogenomics into diagnostic genetic tests and ordering pharmacogenomic panels.


Asunto(s)
Sistema Cardiovascular , Pruebas de Farmacogenómica , Humanos , Pruebas Genéticas , Farmacéuticos , Farmacogenética
14.
Circ Genom Precis Med ; 17(2): e004370, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38506054

RESUMEN

BACKGROUND: To realize the potential of genome engineering therapeutics, tractable strategies must be identified that balance personalized therapy with the need for off-the-shelf availability. We hypothesized that regional clustering of pathogenic variants can inform the design of rational prime editing therapeutics to treat the majority of genetic cardiovascular diseases with a limited number of reagents. METHODS: We collated 2435 high-confidence pathogenic/likely pathogenic (P/LP) variants in 82 cardiovascular disease genes from ClinVar. We assessed the regional density of these variants by defining a regional clustering index. We then combined a highly active base editor with prime editing to demonstrate the feasibility of a P/LP hotspot-directed genome engineering therapeutic strategy in vitro. RESULTS: P/LP variants in cardiovascular disease genes display higher regional density than rare variants found in the general population. P/LP missense variants displayed higher average regional density than P/LP truncating variants. Following hypermutagenesis at a pathogenic hotspot, mean prime editing efficiency across introduced variants was 57±27%. CONCLUSIONS: Designing therapeutics that target pathogenic hotspots will not only address known missense P/LP variants but also novel P/LP variants identified in these hotspots as well. Moreover, the clustering of P/LP missense rather than truncating variants in these hotspots suggests that prime editing technology is particularly valuable for dominant negative disease. Although prime editing technology in relation to cardiac health continues to improve, this study presents an approach to targeting the most impactful regions of the genome for inherited cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Edición Génica , Humanos , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Mutación Missense
15.
Nat Biotechnol ; 40(7): 1035-1041, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35347328

RESUMEN

Whole-genome sequencing (WGS) can identify variants that cause genetic disease, but the time required for sequencing and analysis has been a barrier to its use in acutely ill patients. In the present study, we develop an approach for ultra-rapid nanopore WGS that combines an optimized sample preparation protocol, distributing sequencing over 48 flow cells, near real-time base calling and alignment, accelerated variant calling and fast variant filtration for efficient manual review. Application to two example clinical cases identified a candidate variant in <8 h from sample preparation to variant identification. We show that this framework provides accurate variant calls and efficient prioritization, and accelerates diagnostic clinical genome sequencing twofold compared with previous approaches.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Mapeo Cromosómico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Secuenciación Completa del Genoma/métodos
16.
Artículo en Inglés | MEDLINE | ID: mdl-31570382

RESUMEN

Informed consent, the process of gathering autonomous authorization for a medical intervention or medical research participation, is a fundamental component of medical practice. Medical informed consent assumes decision-making capacity, voluntariness, comprehension, and adequate information. The increasing use of genetic testing, particularly genomic sequencing, in clinical and research settings has presented many new challenges for clinicians and researchers when obtaining informed consent. Many of these challenges revolve around the need for patient comprehension of sufficient information. Genomic sequencing is complex-all of the possible results are too numerous to explain, and many of the risks and benefits remain unknown. Thus, historical standards of consent are difficult to apply. Alternative models of consent have been proposed to increase patient understanding, and several have empirically demonstrated effectiveness. However, there is still a striking lack of consensus in the genetics community about what constitutes informed consent in the context of genomic sequencing. Multiple approaches are needed to address this challenge, including consensus building around standards, targeted use of genetic counselors in nongenetics clinics in which genomic testing is ordered, and the development and testing of alternative models for obtaining informed consent.


Asunto(s)
Asesoramiento Genético/métodos , Pruebas Genéticas , Consentimiento Informado/normas , Femenino , Asesoramiento Genético/tendencias , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino
17.
NPJ Genom Med ; 5(1): 56, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319814

RESUMEN

Whole-genome sequencing (WGS) is positioned to become one of the most robust strategies for achieving timely diagnosis of rare genomic diseases. Despite its favorable diagnostic performance compared to conventional testing strategies, routine use and reimbursement of WGS are hampered by inconsistencies in the definition and measurement of clinical utility. For example, what constitutes clinical utility for WGS varies by stakeholder's perspective (physicians, patients, families, insurance companies, health-care organizations, and society), clinical context (prenatal, pediatric, critical care, adult medicine), and test purpose (diagnosis, screening, treatment selection). A rapidly evolving technology landscape and challenges associated with robust comparative study design in the context of rare disease further impede progress in this area of empiric research. To address this challenge, an expert working group of the Medical Genome Initiative was formed. Following a consensus-based process, we align with a broad definition of clinical utility and propose a conceptually-grounded and empirically-guided measurement toolkit focused on four domains of utility: diagnostic thinking efficacy, therapeutic efficacy, patient outcome efficacy, and societal efficacy. For each domain of utility, we offer specific indicators and measurement strategies. While we focus on diagnostic applications of WGS for rare germline diseases, this toolkit offers a flexible framework for best practices around measuring clinical utility for a range of WGS applications. While we expect this toolkit to evolve over time, it provides a resource for laboratories, clinicians, and researchers looking to characterize the value of WGS beyond the laboratory.

18.
Nat Med ; 25(6): 911-919, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31160820

RESUMEN

It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene1. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches2-5. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases6-8. This includes muscle biopsies from patients with undiagnosed rare muscle disorders6,9, and cultured fibroblasts from patients with mitochondrial disorders7. However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.


Asunto(s)
Enfermedades Raras/genética , Ceramidasa Ácida/genética , Estudios de Casos y Controles , Niño , Preescolar , Estudios de Cohortes , Femenino , Variación Genética , Humanos , Masculino , Modelos Genéticos , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Canales de Potasio/genética , ARN/sangre , ARN/genética , Empalme del ARN/genética , Enfermedades Raras/sangre , Análisis de Secuencia de ARN , Secuenciación del Exoma
20.
Genome Med ; 8(1): 24, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26932475

RESUMEN

BACKGROUND: As whole exome sequencing (WES) and whole genome sequencing (WGS) transition from research tools to clinical diagnostic tests, it is increasingly critical for sequencing methods and analysis pipelines to be technically accurate. The Genome in a Bottle Consortium has recently published a set of benchmark SNV, indel, and homozygous reference genotypes for the pilot whole genome NIST Reference Material based on the NA12878 genome. METHODS: We examine the relationship between human genome complexity and genes/variants reported to be associated with human disease. Specifically, we map regions of medical relevance to benchmark regions of high or low confidence. We use benchmark data to assess the sensitivity and positive predictive value of two representative sequencing pipelines for specific classes of variation. RESULTS: We observe that the accuracy of a variant call depends on the genomic region, variant type, and read depth, and varies by analytical pipeline. We find that most false negative WGS calls result from filtering while most false negative WES variants relate to poor coverage. We find that only 74.6% of the exonic bases in ClinVar and OMIM genes and 82.1% of the exonic bases in ACMG-reportable genes are found in high-confidence regions. Only 990 genes in the genome are found entirely within high-confidence regions while 593 of 3,300 ClinVar/OMIM genes have less than 50% of their total exonic base pairs in high-confidence regions. We find greater than 77 % of the pathogenic or likely pathogenic SNVs currently in ClinVar fall within high-confidence regions. We identify sites that are prone to sequencing errors, including thousands present in publicly available variant databases. Finally, we examine the clinical impact of mandatory reporting of secondary findings, highlighting a false positive variant found in BRCA2. CONCLUSIONS: Together, these data illustrate the importance of appropriate use and continued improvement of technical benchmarks to ensure accurate and judicious interpretation of next-generation DNA sequencing results in the clinical setting.


Asunto(s)
Genética Médica , Genoma Humano , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Biología Computacional/métodos , Biología Computacional/normas , Bases de Datos de Ácidos Nucleicos , Exoma , Variación Genética , Genética Médica/métodos , Genética Médica/normas , Genómica/métodos , Genómica/normas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA