Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 620(7972): 97-103, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532816

RESUMEN

Earth system models and various climate proxy sources indicate global warming is unprecedented during at least the Common Era1. However, tree-ring proxies often estimate temperatures during the Medieval Climate Anomaly (950-1250 CE) that are similar to, or exceed, those recorded for the past century2,3, in contrast to simulation experiments at regional scales4. This not only calls into question the reliability of models and proxies but also contributes to uncertainty in future climate projections5. Here we show that the current climate of the Fennoscandian Peninsula is substantially warmer than that of the medieval period. This highlights the dominant role of anthropogenic forcing in climate warming even at the regional scale, thereby reconciling inconsistencies between reconstructions and model simulations. We used an annually resolved 1,170-year-long tree-ring record that relies exclusively on tracheid anatomical measurements from Pinus sylvestris trees, providing high-fidelity measurements of instrumental temperature variability during the warm season. We therefore call for the construction of more such millennia-long records to further improve our understanding and reduce uncertainties around historical and future climate change at inter-regional and eventually global scales.


Asunto(s)
Cambio Climático , Pinus , Temperatura , Árboles , Cambio Climático/historia , Cambio Climático/estadística & datos numéricos , Calentamiento Global/historia , Calentamiento Global/estadística & datos numéricos , Reproducibilidad de los Resultados , Árboles/anatomía & histología , Árboles/crecimiento & desarrollo , Historia Medieval , Historia del Siglo XXI , Modelos Climáticos , Incertidumbre , Pinus/anatomía & histología , Pinus/crecimiento & desarrollo , Internacionalidad
2.
Glob Chang Biol ; 20(12): 3700-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25156251

RESUMEN

The increasing carbon dioxide (CO2 ) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located across Europe are investigated to determine the intrinsic water-use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX-Bern 1.0) that integrates numerous ecosystem and land-atmosphere exchange processes in a theoretical framework. The spatial pattern of tree-ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south-to-north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil-water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data.


Asunto(s)
Ciclo del Carbono/fisiología , Dióxido de Carbono/metabolismo , Cambio Climático , Bosques , Modelos Teóricos , Árboles/crecimiento & desarrollo , Ciclo Hidrológico/fisiología , Isótopos de Carbono/análisis , Europa (Continente) , Geografía , Factores de Tiempo
3.
Sci Data ; 11(1): 561, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816458

RESUMEN

Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3 of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition.


Asunto(s)
Microbiología del Aire , ADN de Hongos , Esporas Fúngicas , ADN de Hongos/análisis , Hongos/genética , Hongos/clasificación , Biodiversidad
4.
Environ Sci Technol ; 46(17): 9541-7, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22856596

RESUMEN

Trees can take up and assimilate contaminants from the soil, subsurface, and groundwater. Contaminants in the transpiration stream can become bound or incorporated into the annual rings formed in trees of the temperate zones. The chemical analysis of precisely dated tree rings, called dendrochemistry, can be used to interpret past plant interactions with contaminants. This investigation demonstrates that dendrochemistry can be used to generate historical scenarios of past contamination of groundwater by chlorinated solvents at a site in Verl, Germany. Increment cores from trees at the Verl site were collected and analyzed by energy-dispersive X-ray fluorescence (EDXRF) line scanning. The EDXRF profiles showed four to six time periods where tree rings had anomalously high concentrations of chlorine (Cl) as an indicator of potential contamination by chlorinated solvents.


Asunto(s)
Compuestos de Cloro/análisis , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Árboles/química , Alemania , Agua Subterránea/análisis , Halogenación , Solventes/análisis , Árboles/ultraestructura
5.
Nat Commun ; 9(1): 3605, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30190505

RESUMEN

Though tree-ring chronologies are annually resolved, their dating has never been independently validated at the global scale. Moreover, it is unknown if atmospheric radiocarbon enrichment events of cosmogenic origin leave spatiotemporally consistent fingerprints. Here we measure the 14C content in 484 individual tree rings formed in the periods 770-780 and 990-1000 CE. Distinct 14C excursions starting in the boreal summer of 774 and the boreal spring of 993 ensure the precise dating of 44 tree-ring records from five continents. We also identify a meridional decline of 11-year mean atmospheric radiocarbon concentrations across both hemispheres. Corroborated by historical eye-witness accounts of red auroras, our results suggest a global exposure to strong solar proton radiation. To improve understanding of the return frequency and intensity of past cosmic events, which is particularly important for assessing the potential threat of space weather on our society, further annually resolved 14C measurements are needed.

6.
Nat Commun ; 9(1): 5399, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30559446

RESUMEN

The original version of this Article contained an error in the Data Availability section, which incorrectly read 'All data will be freely available via https://www.ams.ethz.ch/research.html .' The correct version states ' http://www.ams.ethz.ch/research/published-data.html ' in place of ' https://www.ams.ethz.ch/research.html '. This has been corrected in both the PDF and HTML versions of the Article.

7.
Sci Rep ; 4: 4222, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24573214

RESUMEN

Sulfur and iron concentrations in wood from three 17(th) century shipwrecks in the Baltic Sea, the Ghost wreck, the Crown and the Sword, were obtained by X-ray fluorescence (XRF) scanning. In near anaerobic environments symbiotic microorganisms degrade waterlogged wood, reduce sulfate and promote accumulation of low-valent sulfur compounds, as previously found for the famous wrecks of the Vasa and Mary Rose. Sulfur K-edge X-ray absorption near-edge structure (XANES) analyses of Ghost wreck wood show that organic thiols and disulfides dominate, together with elemental sulfur probably generated by sulfur-oxidizing Beggiatoa bacteria. Iron sulfides were not detected, consistent with the relatively low iron concentration in the wood. In a museum climate with high atmospheric humidity oxidation processes, especially of iron sulfides formed in the presence of corroding iron, may induce post-conservation wood degradation. Subject to more general confirmation by further analyses no severe conservation concerns are expected for the Ghost wreck wood.


Asunto(s)
Hierro/química , Agua de Mar , Azufre/química , Madera/química , Madera/microbiología , Difracción de Rayos X
8.
Chemosphere ; 95: 58-62, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24034830

RESUMEN

Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations.


Asunto(s)
Metales/química , Espectrometría por Rayos X , Calcio/química , Monitoreo del Ambiente/métodos , Potasio/química , Árboles/química , Árboles/fisiología , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA