Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Crit Rev Biochem Mol Biol ; 57(1): 1-15, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34384295

RESUMEN

Among the enzyme lineages that undoubtedly emerged prior to the last universal common ancestor is the so-called HUP, which includes Class I aminoacyl tRNA synthetases (AARSs) as well as enzymes mediating NAD, FAD, and CoA biosynthesis. Here, we provide a detailed analysis of HUP evolution, from emergence to structural and functional diversification. The HUP is a nucleotide binding domain that uniquely catalyzes adenylation via the release of pyrophosphate. In contrast to other ancient nucleotide binding domains with the αßα sandwich architecture, such as P-loop NTPases, the HUP's most conserved feature is not phosphate binding, but rather ribose binding by backbone interactions to the tips of ß1 and/or ß4. Indeed, the HUP exhibits unusual evolutionary plasticity and, while ribose binding is conserved, the location and mode of binding to the base and phosphate moieties of the nucleotide, and to the substrate(s) reacting with it, have diverged with time, foremost along the emergence of the AARSs. The HUP also beautifully demonstrates how a well-packed scaffold combined with evolvable surface elements promotes evolutionary innovation. Finally, we offer a scenario for the emergence of the HUP from a seed ßαß fragment, and suggest that despite an identical architecture, the HUP and the Rossmann represent independent emergences.


Asunto(s)
Aminoacil-ARNt Sintetasas , Ribosa , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Evolución Molecular , Nucleótidos , Alineación de Secuencia
2.
Biochem Soc Trans ; 52(3): 1109-1120, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38884776

RESUMEN

Mupirocin is a broad-spectrum antibiotic that acts predominantly against Gram-positive bacteria. It is produced by Pseudomonas fluorescens NCIMB 10586 and has been clinically used to treat primary and secondary skin infections and to eradicate nasal colonisation of methicillin-resistant Staphylococcus aureus strains. Mupirocin inhibits protein synthesis by blocking the active site of isoleucyl-tRNA synthetase (IleRS), which prevents the enzyme from binding isoleucine and ATP for Ile-tRNAIle synthesis. Two types of IleRS are found in bacteria - while IleRS1 is susceptible to mupirocin inhibition, IleRS2 provides resistance to cells. These two types belong to distinct evolutionary clades which likely emerged from an early gene duplication in bacteria. Resistance in IleRS2 is based on the loss of interactions that govern mupirocin binding to IleRS1, such as hydrogen bonding to the carboxylate moiety of mupirocin. IleRS2 enzymes with Ki in the millimolar range have recently been discovered. These hyper-resistant IleRS2 variants surprisingly have a non-canonical version of the catalytic motif, which serves as a signature motif of class I aminoacyl-tRNA synthetases to which IleRS belongs. The non-canonical motif, in which the 1st and 3rd positions are swapped, is key for hyper-resistance and can be accommodated without abolishing enzyme activity in IleRS2 but not in IleRS1. Clinical use of mupirocin led to the emergence of resistance in S. aureus. Low-level resistance arises by mutations of the housekeeping IleRS1, while high-level resistance develops by the acquisition of the resistant IleRS2 on a plasmid. There is no evidence that hyper-resistant variants have been found in clinical isolates.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Isoleucina-ARNt Ligasa , Mupirocina , Mupirocina/farmacología , Isoleucina-ARNt Ligasa/metabolismo , Antibacterianos/farmacología , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos
3.
Nucleic Acids Res ; 50(7): 4029-4041, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35357484

RESUMEN

Aminoacyl-tRNA synthetases (AARS) translate the genetic code by loading tRNAs with the cognate amino acids. The errors in amino acid recognition are cleared at the AARS editing domain through hydrolysis of misaminoacyl-tRNAs. This ensures faithful protein synthesis and cellular fitness. Using Escherichia coli isoleucyl-tRNA synthetase (IleRS) as a model enzyme, we demonstrated that the class I editing domain clears the non-cognate amino acids well-discriminated at the synthetic site with the same rates as the weakly-discriminated fidelity threats. This unveiled low selectivity suggests that evolutionary pressure to optimize the rates against the amino acids that jeopardize translational fidelity did not shape the editing site. Instead, we propose that editing was shaped to safeguard cognate aminoacyl-tRNAs against hydrolysis. Misediting is prevented by the residues that promote negative catalysis through destabilisation of the transition state comprising cognate amino acid. Such powerful design allows broad substrate acceptance of the editing domain along with its exquisite specificity in the cognate aminoacyl-tRNA rejection. Editing proceeds by direct substrate delivery to the editing domain (in cis pathway). However, we found that class I IleRS also releases misaminoacyl-tRNAIle and edits it in trans. This minor editing pathway was up to now recognized only for class II AARSs.


Asunto(s)
Aminoacil-ARNt Sintetasas , Edición de ARN , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/metabolismo , Catálisis , Escherichia coli/metabolismo , ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/metabolismo
4.
Biochemistry ; 59(46): 4456-4462, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33175508

RESUMEN

Polyamines are known to mediate diverse biological processes, and specifically to bind and stabilize compact conformations of nucleic acids, acting as chemical chaperones that promote folding by offsetting the repulsive negative charges of the phosphodiester backbone. However, whether and how polyamines modulate the structure and function of proteins remain unclear. In particular, early proteins are thought to have been highly acidic, like nucleic acids, due to a scarcity of basic amino acids in the prebiotic context. Perhaps polyamines, the abiotic synthesis of which is simple, could have served as chemical chaperones for such primordial proteins? We replaced all lysines of an ancestral 60-residue helix-bundle protein with glutamate, resulting in a disordered protein with 21 glutamates in total. Polyamines efficiently induce folding of this hyperacidic protein at submillimolar concentrations, and their potency scaled with the number of amine groups. Compared to cations, polyamines were several orders of magnitude more potent than Na+, while Mg2+ and Ca2+ had an effect similar to that of a diamine, inducing folding at approximately seawater concentrations. We propose that (i) polyamines and dications may have had a role in promoting folding of early proteins devoid of basic residues and (ii) coil-helix transitions could be the basis of polyamine regulation in contemporary proteins.


Asunto(s)
Poliaminas/química , Proteínas/química , Sustitución de Aminoácidos , Dicroismo Circular , Ácido Glutámico/química , Concentración de Iones de Hidrógeno , Lisina/química , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Proteínas/metabolismo
5.
EMBO J ; 33(15): 1639-53, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24935946

RESUMEN

The fidelity of protein synthesis depends on the capacity of aminoacyl-tRNA synthetases (AARSs) to couple only cognate amino acid-tRNA pairs. If amino acid selectivity is compromised, fidelity can be ensured by an inherent AARS editing activity that hydrolyses mischarged tRNAs. Here, we show that the editing activity of Escherichia coli leucyl-tRNA synthetase (EcLeuRS) is not required to prevent incorrect isoleucine incorporation. Rather, as shown by kinetic, structural and in vivo approaches, the prime biological function of LeuRS editing is to prevent mis-incorporation of the non-standard amino acid norvaline. This conclusion follows from a reassessment of the discriminatory power of LeuRS against isoleucine and the demonstration that a LeuRS editing-deficient E. coli strain grows normally in high concentrations of isoleucine but not under oxygen deprivation conditions when norvaline accumulates to substantial levels. Thus, AARS-based translational quality control is a key feature for bacterial adaptive response to oxygen deprivation. The non-essential role for editing under normal bacterial growth has important implications for the development of resistance to antimicrobial agents targeting the LeuRS editing site.


Asunto(s)
Leucina-ARNt Ligasa/genética , Leucina-ARNt Ligasa/metabolismo , Valina/análogos & derivados , Aerobiosis , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Isoleucina/genética , Isoleucina/metabolismo , Isoleucina/farmacología , Cinética , Leucina-ARNt Ligasa/química , Metionina/química , Metionina/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , Edición de ARN , Valina/genética , Valina/metabolismo
6.
Methods ; 113: 13-26, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27713080

RESUMEN

The covalent coupling of cognate amino acid-tRNA pairs by corresponding aminoacyl-tRNA synthetases (aaRS) defines the genetic code and provides aminoacylated tRNAs for ribosomal protein synthesis. Besides the cognate substrate, some non-cognate amino acids may also compete for tRNA aminoacylation. However, their participation in protein synthesis is generally prevented by an aaRS proofreading activity located in the synthetic site and in a separate editing domain. These mechanisms, coupled with the ability of certain aaRSs to discriminate well against non-cognate amino acids in the synthetic reaction alone, define the accuracy of the aminoacylation reaction. aaRS quality control may also act as a gatekeeper for the standard genetic code and prevents infiltration by natural amino acids that are not normally coded for protein biosynthesis. This latter finding has reinforced interest in understanding the principles that govern discrimination against a range of potential non-cognate amino acids. This paper presents an overview of the kinetic assays that have been established for monitoring synthetic and editing reactions with cognate and non-cognate amino acid substrates. Taking into account the peculiarities of non-cognate reactions, the specific controls needed and the dedicated experimental designs are discussed in detail. Kinetic partitioning within the synthetic and editing sites controls the balance between editing and aminoacylation. We describe in detail steady-state and single-turnover approaches for the analysis of synthetic and editing reactions, which ultimately enable mechanisms of amino acid discrimination to be determined.


Asunto(s)
Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Pruebas de Enzimas , Edición de ARN , ARN de Transferencia Aminoácido-Específico/genética , Aminoacilación de ARN de Transferencia , Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/genética , Código Genético , Hidrólisis , Cinética , ARN de Transferencia Aminoácido-Específico/metabolismo , Especificidad por Sustrato
7.
J Biol Chem ; 291(16): 8618-31, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26921320

RESUMEN

Isoleucyl-tRNA synthetase (IleRS) is unusual among aminoacyl-tRNA synthetases in having a tRNA-dependent pre-transfer editing activity. Alongside the typical bacterial IleRS (such as Escherichia coli IleRS), some bacteria also have the enzymes (eukaryote-like) that cluster with eukaryotic IleRSs and exhibit low sensitivity to the antibiotic mupirocin. Our phylogenetic analysis suggests that the ileS1 and ileS2 genes of contemporary bacteria are the descendants of genes that might have arisen by an ancient duplication event before the separation of bacteria and archaea. We present the analysis of evolutionary constraints of the synthetic and editing reactions in eukaryotic/eukaryote-like IleRSs, which share a common origin but diverged through adaptation to different cell environments. The enzyme from the yeast cytosol exhibits tRNA-dependent pre-transfer editing analogous to E. coli IleRS. This argues for the presence of this proofreading in the common ancestor of both IleRS types and an ancient origin of the synthetic site-based quality control step. Yet surprisingly, the eukaryote-like enzyme from Streptomyces griseus IleRS lacks this capacity; at the same time, its synthetic site displays the 10(3)-fold drop in sensitivity to antibiotic mupirocin relative to the yeast enzyme. The discovery that pre-transfer editing is optional in IleRSs lends support to the notion that the conserved post-transfer editing domain is the main checkpoint in these enzymes. We substantiated this by showing that under error-prone conditions S. griseus IleRS is able to rescue the growth of an E. coli lacking functional IleRS, providing the first evidence that tRNA-dependent pre-transfer editing in IleRS is not essential for cell viability.


Asunto(s)
Isoleucina-ARNt Ligasa/metabolismo , ARN de Transferencia/metabolismo , Streptomyces griseus/enzimología , Escherichia coli/enzimología , Escherichia coli/genética , Prueba de Complementación Genética , Isoleucina-ARNt Ligasa/genética , ARN de Transferencia/genética , Streptomyces griseus/genética
8.
J Biol Chem ; 290(22): 13981-91, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25873392

RESUMEN

Aminoacyl-tRNA synthetases catalyze ATP-dependent covalent coupling of cognate amino acids and tRNAs for ribosomal protein synthesis. Escherichia coli isoleucyl-tRNA synthetase (IleRS) exploits both the tRNA-dependent pre- and post-transfer editing pathways to minimize errors in translation. However, the molecular mechanisms by which tRNA(Ile) organizes the synthetic site to enhance pre-transfer editing, an idiosyncratic feature of IleRS, remains elusive. Here we show that tRNA(Ile) affects both the synthetic and editing reactions localized within the IleRS synthetic site. In a complex with cognate tRNA, IleRS exhibits a 10-fold faster aminoacyl-AMP hydrolysis and a 10-fold drop in amino acid affinity relative to the free enzyme. Remarkably, the specificity against non-cognate valine was not improved by the presence of tRNA in either of these processes. Instead, amino acid specificity is determined by the protein component per se, whereas the tRNA promotes catalytic performance of the synthetic site, bringing about less error-prone and kinetically optimized isoleucyl-tRNA(Ile) synthesis under cellular conditions. Finally, the extent to which tRNA(Ile) modulates activation and pre-transfer editing is independent of the intactness of its 3'-end. This finding decouples aminoacylation and pre-transfer editing within the IleRS synthetic site and further demonstrates that the A76 hydroxyl groups participate in post-transfer editing only. The data are consistent with a model whereby the 3'-end of the tRNA remains free to sample different positions within the IleRS·tRNA complex, whereas the fine-tuning of the synthetic site is attained via conformational rearrangement of the enzyme through the interactions with the remaining parts of the tRNA body.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Isoleucina-ARNt Ligasa/genética , Edición de ARN , Precursores del ARN/química , ARN de Transferencia/química , Adenosina Trifosfato/química , Aminoácidos/química , Sitios de Unión , Catálisis , Escherichia coli/enzimología , Hidrólisis , Isoleucina/química , Isoleucina-ARNt Ligasa/química , Fosfatos/química , Conformación Proteica , Proteínas de Unión al ARN/química , Especificidad por Sustrato , Valina/química
9.
Phys Chem Chem Phys ; 17(29): 19030-8, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26129823

RESUMEN

Acyl carrier proteins (ACPs) are among the most promiscuous proteins in terms of protein-protein interactions and it is quite puzzling how ACPs select the correct partner between many possible upstream and downstream binding proteins. To address this question, we performed molecular dynamics simulations on dimeric Bradyrhizobium japonicum Gly:CP ligase 1 to inspect the origin of its selectivity towards the three types of carrier proteins, namely holoCP, apoCP, and holoCP-Gly, which only differ in the attached prosthetic group. In line with experiments, MM-GBSA analysis revealed that the ligase preferentially binds the holoCP form to both subunits with the binding free energies of -20.7 and -19.1 kcal mol(-1), while the apoCP form, without the prosthetic group, is also recognized, but the binding values of -9.2 and -3.6 kcal mol(-1) suggest that there is no competition for the ligase binding as long as the holoCP is present. After the prosthetic group becomes glycylated, the holoCP-Gly dissociates from the ligase, as supported by its endergonic binding free energies of 2.9 and 20.9 kcal mol(-1). Our results indicate that these affinity differences are influenced by three aspects: the form of the prosthetic group and the specific non-polar hydrophobic interactions, as well as charge complementarity dominantly manifested through Arg220-Glu53 ion pair within the binding region among proteins. A careful examination of the bonding patterns within the ligase active site elucidated the interactions with Arg258, Asp215 and Tyr132 as being predominant in stabilizing the prosthetic group, which are significantly diminished upon glycation, thus promoting complex dissociation.


Asunto(s)
Proteínas Portadoras/química , Ligasas/química , Simulación de Dinámica Molecular , Bradyrhizobium/enzimología , Proteínas Portadoras/metabolismo , Ligasas/metabolismo , Unión Proteica
10.
Biochemistry ; 53(39): 6189-98, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25207837

RESUMEN

The accurate expression of genetic information relies on the fidelity of amino acid-tRNA coupling by aminoacyl-tRNA synthetases (aaRS). When the specificity against structurally similar noncognate amino acids in the synthetic reaction does not support a threshold fidelity level for translation, the aaRS employ intrinsic hydrolytic editing to correct errors in aminoacylation. Escherichia coli isoleucyl-tRNA synthetase (EcIleRS) is a class I aaRS that is notable for its use of tRNA-dependent pretransfer editing to hydrolyze noncognate valyl-adenylate prior to aminoacyl-tRNA formation. On the basis of the finding that IleRS possessing an inactivated post-transfer editing domain is still capable of robust tRNA-dependent editing, we have recently proposed that the pretransfer editing activity resides within the synthetic site. Here we apply an improved methodology that allows quantitation of the AMP fraction that arises particularly from tRNA-dependent aa-AMP hydrolysis. By this approach, we demonstrate that tRNA-dependent pretransfer editing accounts for nearly one-third of the total proofreading by EcIleRS and that a highly conserved tyrosine within the synthetic site modulates both editing and aminoacylation. Therefore, synthesis of aminoacyl-tRNA and hydrolysis of aminoacyl-adenylates employ overlapping amino acid determinants. We suggest that this overlap hindered the evolution of synthetic site-based pretransfer editing as the predominant proofreading pathway, because that activity is difficult to accommodate in the context of efficient aminoacyl-tRNA synthesis. Instead, the acquisition of a spatially separate domain dedicated to post-transfer editing alone allowed for the development of a powerful deacylation machinery that effectively competes with dissociation of misacylated tRNAs.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Isoleucina-ARNt Ligasa/metabolismo , Edición de ARN , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Vías Biosintéticas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrólisis , Isoleucina-ARNt Ligasa/química , Isoleucina-ARNt Ligasa/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/genética , ARN de Transferencia de Isoleucina/metabolismo , Homología de Secuencia de Aminoácido , Aminoacilación de ARN de Transferencia , Tirosina/genética , Tirosina/metabolismo
11.
Top Curr Chem ; 344: 1-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23852030

RESUMEN

Aminoacyl-tRNA synthetases (aaRS) ensure the faithful transmission of genetic information in all living cells. The 24 known aaRS families are divided into 2 structurally distinct classes (class I and class II), each featuring a catalytic domain with a common fold that binds ATP, amino acid, and the 3'-terminus of tRNA. In a common two-step reaction, each aaRS first uses the energy stored in ATP to synthesize an activated aminoacyl adenylate intermediate. In the second step, either the 2'- or 3'-hydroxyl oxygen atom of the 3'-A76 tRNA nucleotide functions as a nucleophile in synthesis of aminoacyl-tRNA. Ten of the 24 aaRS families are unable to distinguish cognate from noncognate amino acids in the synthetic reactions alone. These enzymes possess additional editing activities for hydrolysis of misactivated amino acids and misacylated tRNAs, with clearance of the latter species accomplished in spatially separate post-transfer editing domains. A distinct class of trans-acting proteins that are homologous to class II editing domains also perform hydrolytic editing of some misacylated tRNAs. Here we review essential themes in catalysis with a view toward integrating the kinetic, stereochemical, and structural mechanisms of the enzymes. Although the aaRS have now been the subject of investigation for many decades, it will be seen that a significant number of questions regarding fundamental catalytic functioning still remain unresolved.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Edición de ARN , Aminoacil-ARNt Sintetasas/química , Animales , Humanos , Aminoacil-ARN de Transferencia/biosíntesis , Aminoacil-ARN de Transferencia/metabolismo
12.
Int J Biol Macromol ; 262(Pt 1): 130068, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340920

RESUMEN

Accurate pairing of amino acids and tRNAs is a prerequisite for faithful translation of genetic information during protein biosynthesis. Here we present the effects of proteome-wide mistranslation of isoleucine (Ile) by canonical valine (Val) or non-proteinogenic norvaline (Nva) in a genetically engineered Escherichia coli strain with an editing-defective isoleucyl-tRNA synthetase (IleRS). Editing-defective IleRS efficiently mischarges both Val and Nva to tRNAIle and impairs the translational accuracy of Ile decoding. When mistranslation was induced by the addition of Val or Nva to the growth medium, an Ile-to-Val or Ile-to-Nva substitution of up to 20 % was measured by high-resolution mass spectrometry. This mistranslation level impaired bacterial growth, promoted the SOS response and filamentation during stationary phase, caused global proteome dysregulation and upregulation of the cellular apparatus for maintaining proteostasis, including the major chaperones (GroES/EL, DnaK/DnaJ/GrpE and HtpG), the disaggregase ClpB and the proteases (Lon, HslV/HslU, ClpA, ClpS). The most important consequence of mistranslation appears to be non-specific protein aggregation, which is effectively counteracted by the disaggregase ClpB. Our data show that E. coli can sustain high isoleucine mistranslation levels and remain viable despite excessive protein aggregation and severely impaired translational fidelity. However, we show that inaccurate translation lowers bacterial resilience to heat stress and decreases bacterial survival at elevated temperatures.


Asunto(s)
Escherichia coli , Resiliencia Psicológica , Escherichia coli/genética , Escherichia coli/metabolismo , Isoleucina , Proteoma/metabolismo , Agregado de Proteínas , Isoleucina-ARNt Ligasa/química , Isoleucina-ARNt Ligasa/genética , Isoleucina-ARNt Ligasa/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
13.
J Biol Chem ; 287(30): 25381-94, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22648413

RESUMEN

Comprehensive steady-state and transient kinetic studies of the synthetic and editing activities of Escherichia coli leucyl-tRNA synthetase (LeuRS) demonstrate that the enzyme depends almost entirely on post-transfer editing to endow the cell with specificity against incorporation of norvaline into protein. Among the three class I tRNA synthetases possessing a dedicated post-transfer editing domain (connective peptide 1; CP1 domain), LeuRS resembles valyl-tRNA synthetase in its reliance on post-transfer editing, whereas isoleucyl-tRNA synthetase differs in retaining a distinct tRNA-dependent synthetic site pre-transfer editing activity to clear noncognate amino acids before misacylation. Further characterization of the post-transfer editing activity in LeuRS by single-turnover kinetics demonstrates that the rate-limiting step is dissociation of deacylated tRNA and/or amino acid product and highlights the critical role of a conserved aspartate residue in mediating the first-order hydrolytic steps on the enzyme. Parallel analyses of adenylate and aminoacyl-tRNA formation reactions by wild-type and mutant LeuRS demonstrate that the efficiency of post-transfer editing is controlled by kinetic partitioning between hydrolysis and dissociation of misacylated tRNA and shows that trans editing after rebinding is a competent kinetic pathway. Together with prior analyses of isoleucyl-tRNA synthetase and valyl-tRNA synthetase, these experiments provide the basis for a comprehensive model of editing by class I tRNA synthetases, in which kinetic partitioning plays an essential role at both pre-transfer and post-transfer steps.


Asunto(s)
Escherichia coli/enzimología , Leucina-ARNt Ligasa/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Leucina/metabolismo , Hidrólisis , Cinética , Estructura Terciaria de Proteína , Valina/análogos & derivados , Valina/metabolismo
14.
Arch Biochem Biophys ; 529(2): 122-30, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23228595

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) catalyze the attachment of amino acids to their cognate tRNAs to establish the genetic code. To obtain the high degree of accuracy that is observed in translation, these enzymes must exhibit strict substrate specificity for their cognate amino acids and tRNAs. We studied the requirements for tRNA(Ser) recognition by maize cytosolic seryl-tRNA synthetase (SerRS). The enzyme efficiently recognized bacterial and eukaryotic tRNAs(Ser) indicating that it can accommodate various types of tRNA(Ser) structures. Discriminator base G73 is crucial for recognition by cytosolic SerRS. Although cytosolic SerRS efficiently recognized bacterial tRNAs(Ser), it is localized exclusively in the cytosol. The fidelity of maize cytosolic and dually targeted organellar SerRS with respect to amino acid recognition was compared. Organellar SerRS exhibited higher discrimination against tested non-cognate substrates as compared with cytosolic counterpart. Both enzymes showed pre-transfer editing activity implying their high overall accuracy. The contribution of various reaction pathways in the pre-transfer editing reactions by maize enzymes were different and dependent on the non-cognate substrate. The fidelity mechanisms of maize organellar SerRS, high discriminatory power and proofreading, indicate that aaRSs in general may play an important role in translational quality control in plant mitochondria and chloroplasts.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/metabolismo , Zea mays/enzimología , Activación Enzimática , Especificidad por Sustrato
15.
FEBS Lett ; 597(24): 3114-3124, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38015921

RESUMEN

Isoleucyl-tRNA synthetase (IleRS) links isoleucine to cognate tRNA via the Ile-AMP intermediate. Non-cognate valine is often mistakenly recognized as the IleRS substrate; therefore, to maintain the accuracy of translation, IleRS hydrolyzes Val-AMP within the synthetic site (pre-transfer editing). As this activity is not efficient enough, Val-tRNAIle is formed and hydrolyzed in the distant post-transfer editing site. A strictly conserved synthetic site residue Gly56 was previously shown to safeguard Ile-to-Val discrimination during aminoacyl (aa)-AMP formation. Here, we show that the Gly56Ala variant lost its specificity in pre-transfer editing, confirming that this residue ensures the selectivity of all synthetic site reactions. Moreover, we found that the Gly56Ala mutation affects IleRS interaction with aa-tRNA likely by disturbing tRNA-dependent communication between the two active sites.


Asunto(s)
Escherichia coli , Isoleucina-ARNt Ligasa , Isoleucina-ARNt Ligasa/genética , Isoleucina-ARNt Ligasa/química , Isoleucina-ARNt Ligasa/metabolismo , Escherichia coli/genética , ARN de Transferencia/genética , Valina , Dominio Catalítico , Isoleucina , Especificidad por Sustrato , Sitios de Unión
16.
FEBS Lett ; 597(23): 2975-2992, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37804069

RESUMEN

We have previously identified a unique disulfide bond in the crystal structure of Arabidopsis cytosolic seryl-tRNA synthetase involving cysteines evolutionarily conserved in all green plants. Here, we discovered that both cysteines are important for protein stability, but with opposite effects, and that their microenvironment may promote disulfide bond formation in oxidizing conditions. The crystal structure of the C244S mutant exhibited higher rigidity and an extensive network of noncovalent interactions correlating with its higher thermal stability. The activity of the wild-type showed resistance to oxidation with H2 O2 , while the activities of cysteine-to-serine mutants were impaired, indicating that the disulfide link may enable the protein to function under oxidative stress conditions which can be beneficial for an efficient plant stress response.


Asunto(s)
Arabidopsis , Serina-ARNt Ligasa , Serina-ARNt Ligasa/química , Cisteína/genética , Cisteína/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oxidación-Reducción , Disulfuros
17.
Protein Sci ; 31(9): e4418, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36757682

RESUMEN

Isoleucyl-tRNA synthetase (IleRS) is an essential enzyme that covalently couples isoleucine to the corresponding tRNA. Bacterial IleRSs group in two clades, ileS1 and ileS2, the latter bringing resistance to the natural antibiotic mupirocin. Generally, bacteria rely on either ileS1 or ileS2 as a standalone housekeeping gene. However, we have found an exception by noticing that Bacillus species with genomic ileS2 consistently also keep ileS1, which appears mandatory in the family Bacillaceae. Taking Priestia (Bacillus) megaterium as a model organism, we showed that PmIleRS1 is constitutively expressed, while PmIleRS2 is stress-induced. Both enzymes share the same level of the aminoacylation accuracy. Yet, PmIleRS1 exhibited a two-fold faster aminoacylation turnover (kcat ) than PmIleRS2 and permitted a notably faster cell-free translation. At the same time, PmIleRS2 displayed a 104 -fold increase in its Ki for mupirocin, arguing that the aminoacylation turnover in IleRS2 could have been traded-off for antibiotic resistance. As expected, a P. megaterium strain deleted for ileS2 was mupirocin-sensitive. Interestingly, an attempt to construct a mupirocin-resistant strain lacking ileS1, a solution not found among species of the family Bacillaceae in nature, led to a viable but compromised strain. Our data suggest that PmIleRS1 is kept to promote fast translation, whereas PmIleRS2 is maintained to provide antibiotic resistance when needed. This is consistent with an emerging picture in which fast-growing organisms predominantly use IleRS1 for competitive survival.


Asunto(s)
Bacillus , Farmacorresistencia Microbiana , Isoleucina-ARNt Ligasa , Aminoacil-ARNt Sintetasas/genética , Bacillus/genética , Bacterias/genética , Farmacorresistencia Microbiana/genética , Isoleucina-ARNt Ligasa/genética , Mupirocina/farmacología , ARN de Transferencia
18.
Commun Biol ; 5(1): 883, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038645

RESUMEN

To correctly aminoacylate tRNALeu, leucyl-tRNA synthetase (LeuRS) catalyzes three reactions: activation of leucine by ATP to form leucyl-adenylate (Leu-AMP), transfer of this amino acid to tRNALeu and post-transfer editing of any mischarged product. Although LeuRS has been well characterized biochemically, detailed structural information is currently only available for the latter two stages of catalysis. We have solved crystal structures for all enzymatic states of Neisseria gonorrhoeae LeuRS during Leu-AMP formation. These show a cycle of dramatic conformational changes, involving multiple domains, and correlate with an energetically unfavorable peptide-plane flip observed in the active site of the pre-transition state structure. Biochemical analyses, combined with mutant structural studies, reveal that this backbone distortion acts as a trigger, temporally compartmentalizing the first two catalytic steps. These results unveil the remarkable effect of this small structural alteration on the global dynamics and activity of the enzyme.


Asunto(s)
Leucina-ARNt Ligasa , ARN de Transferencia de Leucina , Catálisis , Dominio Catalítico , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/genética , Leucina-ARNt Ligasa/metabolismo , Péptidos , ARN de Transferencia de Leucina/metabolismo
19.
Protein Sci ; 31(8): e4381, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35900021

RESUMEN

Enzymes are well known for their catalytic abilities, some even reaching "catalytic perfection" in the sense that the reaction they catalyze has reached the physical bound of the diffusion rate. However, our growing understanding of enzyme superfamilies has revealed that only some share a catalytic chemistry while others share a substrate-handle binding motif, for example, for a particular phosphate group. This suggests that some families emerged through a "substrate-handle-binding-first" mechanism ("binding-first" for brevity) instead of "chemistry-first" and we are, therefore, left to wonder what the role of non-catalytic binders might have been during enzyme evolution. In the last of their eight seminal, back-to-back articles from 1976, John Albery and Jeremy Knowles addressed the question of enzyme evolution by arguing that the simplest mode of enzyme evolution is what they defined as "uniform binding" (parallel stabilization of all enzyme-bound states to the same degree). Indeed, we show that a uniform-binding proto-catalyst can accelerate a reaction, but only when catalysis is already present, that is, when the transition state is already stabilized to some degree. Thus, we sought an alternative explanation for the cases where substrate-handle-binding preceded any involvement of a catalyst. We find that evolutionary starting points that exhibit negative catalysis can redirect the reaction's course to a preferred product without need for rate acceleration or product release; that is, if they do not stabilize, or even destabilize, the transition state corresponding to an undesired product. Such a mechanism might explain the emergence of "binding-first" enzyme families like the aldolase superfamily.


Asunto(s)
Enzimas , Catálisis , Enzimas/metabolismo , Cinética
20.
J Biol Chem ; 285(31): 23799-809, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20498377

RESUMEN

Hydrolytic editing activities are present in aminoacyl-tRNA synthetases possessing reduced amino acid discrimination in the synthetic reactions. Post-transfer hydrolysis of misacylated tRNA in class I editing enzymes occurs in a spatially separate domain inserted into the catalytic Rossmann fold, but the location and mechanisms of pre-transfer hydrolysis of misactivated amino acids have been uncertain. Here, we use novel kinetic approaches to distinguish among three models for pre-transfer editing by Escherichia coli isoleucyl-tRNA synthetase (IleRS). We demonstrate that tRNA-dependent hydrolysis of noncognate valyl-adenylate by IleRS is largely insensitive to mutations in the editing domain of the enzyme and that noncatalytic hydrolysis after release is too slow to account for the observed rate of clearing. Measurements of the microscopic rate constants for amino acid transfer to tRNA in IleRS and the related valyl-tRNA synthetase (ValRS) further suggest that pre-transfer editing in IleRS is an enzyme-catalyzed activity residing in the synthetic active site. In this model, the balance between pre-transfer and post-transfer editing pathways is controlled by kinetic partitioning of the noncognate aminoacyl-adenylate. Rate constants for hydrolysis and transfer of a noncognate intermediate are roughly equal in IleRS, whereas in ValRS transfer to tRNA is 200-fold faster than hydrolysis. In consequence, editing by ValRS occurs nearly exclusively by post-transfer hydrolysis in the editing domain, whereas in IleRS both pre- and post-transfer editing are important. In both enzymes, the rates of amino acid transfer to tRNA are similar for cognate and noncognate aminoacyl-adenylates, providing a significant contrast with editing DNA polymerases.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , ARN de Transferencia/química , Catálisis , Dominio Catalítico , Escherichia coli/enzimología , Hidrólisis , Cinética , Modelos Moleculares , Conformación Molecular , Mutación , Ácidos Nucleicos/química , Estructura Terciaria de Proteína , Edición de ARN , Valina/química , Valina-ARNt Ligasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA