Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Heliyon ; 9(5): e15767, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37180919

RESUMEN

Introduction: Repetitive peripheral magnetic stimulation (rPMS) can stimulate profound neuromuscular tissues painlessly to evoke action potentials in motor axons and induce muscle contraction for treating neurological conditions. It has been increasingly used in stroke rehabilitation as an easy-to-administer approach for therapeutic neuromodulation. Objective: We performed this meta-analysis of randomized controlled trials to systematically evaluate the effects of rPMS for the upper limb in patients with stroke, including motor impairment, muscle spasticity, muscle strength, and activity limitation outcomes. Methods: The meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, EMBASE, Web of Science, Cochrane Library, and Physiotherapy Evidence Database (PEDro) were searched for articles published before June 2022. Forest plots were employed to estimate the pooled results of the included studies, and the I2 statistical analysis was used to identify the source of heterogeneity. Publication bias was examined by Egger's regression tests or visual inspection of the funnel plots. Results: The database searches yielded 1052 potential eligible literature; of them, five randomized controlled trials met the eligible criteria, involving a total of 188 participants. Patients in the rPMS group showed better improvement in motor impairment as measured by the FM-UE (MD: 5.39 [95% CI, 4.26 to 6.52]; P < 0.001; I2 = 0%) compared with the control group. Among the secondary outcomes, no difference was found in the improvement of muscle spasticity (SMD: 0.36 [95% CI, -0.05 to 0.77]; P = 0.08; I2 = 41%). There was a significant difference in the proximal (SMD: 0.58 [95% CI, 0.10 to 1.06]; P = 0.02; I2 = 0%) but not the distal muscle strength (SMD: 1.18 [95% CI, -1.00 to 3.36]; P = 0.29; I2 = 93%). Moreover, the activity limitation outcomes were significantly improved with rPMS intervention (SMD: 0.59 [95% CI, 0.08 to 1.10]; P = 0.02; I2 = 0%). Conclusion: This meta-analysis showed that rPMS might improve upper limb motor impairment, proximal muscle strength, and activity limitation outcomes but not muscle spasticity and distal strength in patients after stroke. Due to the limited number of studies, further randomized clinical trials are still warranted for more accurate interpretation and clinical recommendation.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37478040

RESUMEN

Abnormal muscle synergies during sit-to-stand (STS) transitions have been observed post-stroke, which are associated with deteriorated lower-limb function and mobility. Although exoskeletons have been used in restoring lower-limb function, their effects on muscle synergies and lower-limb motor recovery remain unclear. Here, we characterized normal muscle synergy patterns during STS activity in ten healthy adults as a reference, comparing with pathological muscle synergy patterns in ten participants with subacute stroke. Moreover, we assessed the effects of a 3-week exoskeleton-assisted STS training intervention on muscle synergies and clinical scores in seven stroke survivors. We also investigated correlations between neuromuscular complexity of muscle synergies and clinical scores. Our results showed that the STS task involved three motor modules representing distinct biomechanical functions among healthy subjects. In contrast, stroke participants showed 3 abnormal modules for the paretic leg and 2 modules for the non-paretic leg. After the intervention, muscle synergies partially shifted towards the normal pattern observed in healthy subjects on the paretic side. On the non-paretic side, the synergy modules increased to three and neuromuscular coordination improved. Furthermore, the significant intervention-induced increases in Fugl-Meyer Assessment of Lower Extremity and Berg Balance Scale scores were associated with improved muscle synergies on the non-paretic side. These results indicate that the paretic side demonstrates abnormal changes in muscle synergies post-stroke, while the non-paretic side can synergistically adapt to post-stroke biomechanical deviations. Our data show that exoskeleton-based training improved lower-limb function post-stroke by inducing modifications in muscle synergies.


Asunto(s)
Dispositivo Exoesqueleto , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Adulto , Humanos , Músculo Esquelético , Extremidad Inferior , Rehabilitación de Accidente Cerebrovascular/métodos , Sobrevivientes
3.
Front Pediatr ; 10: 972809, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545666

RESUMEN

Background: To explore the geographical pattern and temporal trend of autism spectrum disorders (ASD) epidemiology from 1990 to 2019, and perform a bibliometric analysis of risk factors for ASD. Methods: In this study, ASD epidemiology was estimated with prevalence, incidence, and disability-adjusted life-years (DALYs) of 204 countries and territories by sex, location, and sociodemographic index (SDI). Age-standardized rate (ASR) and estimated annual percentage change (EAPC) were used to quantify ASD temporal trends. Besides, the study performed a bibliometric analysis of ASD risk factors since 1990. Publications published were downloaded from the Web of Science Core Collection database, and were analyzed using CiteSpace. Results: Globally, there were estimated 28.3 million ASD prevalent cases (ASR, 369.4 per 100,000 populations), 603,790 incident cases (ASR, 9.3 per 100,000 populations) and 4.3 million DALYs (ASR, 56.3 per 100,000 populations) in 2019. Increases of autism spectrum disorders were noted in prevalent cases (39.3%), incidence (0.1%), and DALYs (38.7%) from 1990 to 2019. Age-standardized rates and EAPC showed stable trend worldwide over time. A total of 3,991 articles were retrieved from Web of Science, of which 3,590 were obtained for analysis after removing duplicate literatures. "Rehabilitation", "Genetics & Heredity", "Nanoscience & Nanotechnology", "Biochemistry & Molecular biology", "Psychology", "Neurosciences", and "Environmental Sciences" were the hotspots and frontier disciplines of ASD risk factors. Conclusions: Disease burden and risk factors of autism spectrum disorders remain global public health challenge since 1990 according to the GBD epidemiological estimates and bibliometric analysis. The findings help policy makers formulate public health policies concerning prevention targeted for risk factors, early diagnosis and life-long healthcare service of ASD. Increasing knowledge concerning the public awareness of risk factors is also warranted to address global ASD problem.

4.
J Healthc Eng ; 2021: 4071645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34457217

RESUMEN

Kinematic evaluation via portable sensor system has been increasingly applied in neurological sciences and clinical practice. However, conventional kinematic evaluation rarely extends the context beyond the motor impairment level. In addition, kinematic tasks with numerous items could be complex and time consuming that pose a burden to test applications and data processing. The study aimed to explore the correlation of finger-to-nose task (FNT) kinematics via Inertial Measurement Unit with upper limb motor function in subacute stroke. In this study, six FNT kinematic variables were used to measure movement time, smoothness, and velocity in 37 participants with subacute stroke. Upper limb motor function was evaluated with the Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), and modified Barthel Index (MBI). As a result, mean velocity, peak velocity, and the number of movement units were associated with the clinical assessments. The multivariable linear regression models could estimate 55%, 51%, and 32% of variance in FMA-UE, ARAT, and MBI, respectively. In addition, age, gender, type of stroke, and paretic side had no significant effects on these associations. Results show that FNT kinematic variables measured via Inertial Measurement Unit are associated with upper extremity motor function in individuals with subacute stroke. The objective kinematic evaluation may be suitable for predicting clinical measures of motor impairment and capacity to understand upper extremity motor recovery and clinical decision making after stroke. This trial is registered with ChiCTR1900026656.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Fenómenos Biomecánicos , Estudios Transversales , Humanos , Recuperación de la Función , Extremidad Superior
5.
Front Neurol ; 12: 691444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305798

RESUMEN

Background: Robot-assisted arm training (RAT) is an innovative exercise-based therapy that provides highly intensive, adaptive, and task-specific training, yet its effects for stroke individuals with unilateral spatial neglect remain to be explored. The study was aimed to investigate the effects of RAT on unilateral spatial neglect, arm motor function, activities of daily living, and social participation after stroke. Methods: In a pilot randomized controlled trial, individuals with unilateral spatial neglect after right hemisphere stroke were equally allocated to intervention group and control group, 45-min training daily, 5 days/week, for 4 weeks. Outcome measures included the Behavioral Inattention Test-conventional section (BIT-C), Catherine Bergego Scale (CBS), Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Modified Barthel Index (MBI), and World Health Organization Disability Assessment Schedule Version 2.0 (WHODAS 2.0). Results: From November 2018 to February 2021, 20 stroke patients (mean age 47.40 ± 8.47) were enrolled in the study. Robot-assisted arm training was feasible and safe for individuals with unilateral spatial neglect. Both groups had significant improvements in all outcome measures. Participants assigned to RAT therapy had significantly greater improvements in BIT-C (difference, 7.70; 95% CI, 0.55-14.85, P = 0.04), FMA-UE (difference, 5.10; 95% CI, 1.52-8.68, P = 0.01), and WHODAS 2.0 (difference, -7.30; 95% CI, -12.50 to -2.10, P = 0.01). However, the change scores on CBS and MBI demonstrated no significance between the groups. Conclusion: Our findings provide preliminary support for introducing robot-assisted arm training to remediate unilateral spatial neglect after stroke. The training program focusing on neglect of contralateral space and affected upper extremity may be effective in neglect symptoms, motor function recovery, and social participation, while not generalizing into improvements in activities of daily living. Clinical Trial Registration: Chinese Clinical Trial Registry (http://www.chictr.org.cn/) on 17 October 2019, identifier: ChiCTR1900026656.

6.
Front Bioeng Biotechnol ; 9: 660015, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912550

RESUMEN

BACKGROUND: Kinematic analysis facilitates interpreting the extent and mechanisms of motor restoration after stroke. This study was aimed to explore the kinematic components of finger-to-nose test obtained from principal component analysis (PCA) and the associations with upper extremity (UE) motor function in subacute stroke survivors. METHODS: Thirty-seven individuals with subacute stroke and twenty healthy adults participated in the study. Six kinematic metrics during finger-to-nose task (FNT) were utilized to perform PCA. Clinical assessments for stroke participants included the Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), and Modified Barthel Index (MBI). RESULTS: Three principal components (PC) accounting for 91.3% variance were included in multivariable regression models. PC1 (48.8%) was dominated by mean velocity, peak velocity, number of movement units (NMU) and normalized integrated jerk (NIJ). PC2 (31.1%) described percentage of time to peak velocity and movement time. PC3 (11.4%) profiled percentage of time to peak velocity. The variance explained by principal component regression in FMA-UE (R 2 = 0.71) were higher than ARAT (R 2 = 0.59) and MBI (R 2 = 0.29) for stroke individuals. CONCLUSION: Kinematic components during finger-to-nose test identified by PCA are associated with UE motor function in subacute stroke. PCA reveals the intrinsic association among kinematic metrics, which may add value to UE assessment and future intervention targeted for kinematic components for stroke individuals. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry (http://www.chictr.org.cn/) on 17 October 2019, identifier: ChiCTR1900026656.

7.
Ci Ji Yi Xue Za Zhi ; 31(1): 60-62, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30692834

RESUMEN

Polycythemia vera (PV) is relatively uncommon in early adulthood, and evidence about the prevalence of the Janus kinase 2 (JAK2) V617F mutation in the general population is limited. Here, we report a previously healthy volunteer peripheral blood stem cell (PBSC) donor who developed symptomatic PV with the JAK2 V617F mutation 2 years after PBSC mobilization and harvest. The characteristic mutation was identified retrospectively in the blood sample of the donor at the confirmation typing stage, which was before granulocyte colony-stimulating factor injection. This report presents a safety issue for both donor and recipient of hematopoietic stem cell transplantation. Clinicians should be aware of this during health workup and postdonation follow-up of unrelated PBSC donors. Any abnormal and/or equivocal laboratory data, especially during the donor workup stage, should not be overlooked.

8.
Chin Med J (Engl) ; 130(21): 2557-2562, 2017 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-29067954

RESUMEN

BACKGROUND: Accurate evaluation of the plain radiography of lower limb is critical for preoperative planning of total knee arthroplasty (TKA). We aimed to investigate the effect of femoral lateral bowing and rotation on the radiographic measurements of distal femoral condyle resection thickness (DRT) and the distal femoral resection valgus angle (FVA). METHODS: We analyzed 246 three-dimensional femoral models generated from computed tomography images of 123 patients, acquiring projected contours in seven positions - 20° and 10° internal rotation; 0° rotation; 10°, 20°, 30°, and 40° external rotation - for each model. Medial and lateral condyle DRTs, femoral shaft lateral bowing angle (FBA), and distal FVA were determined for each position. Linear mixed effect model was used to determine the effect of degree of femur rotation on repeated measurements of DRT or FVA. RESULTS: FBA significantly affected the FVA and DRT (Pearson's R = 0.767 and -0.408, respectively; P < 0.000). Samples were divided into three groups according to the FBA measured in neutral position: FBA <0°: DRT 3.75 ± 1.30 mm, FVA 4.53° ± 1.27°; FBA >0° but <3°: DRT 3.39 ± 1.31 mm, FVA 5.92° ± 1.31°; FBA >3°: DRT 2.22 ± 1.31 mm, FVA 7.37° ± 1.31°. From simulated 20° internal rotation to 40° external rotation in each femoral model, the average variation ranges of radiographically measured DRT, FVA, and FBA were 0.50 ± 0.28 mm, 2.93° ± 0.96°, and 10.33° ± 1.90°, respectively, with no significant differences among the FBA groups. The degree of femoral rotation significantly affected the FVA (F = 62.148, P < 0.000), whereas there was no effect on condyle resection thickness (F = 0.4705, P = 0.494). CONCLUSIONS: Axial femoral rotation has less effect on radiographic measurements of differences in the DRT than on those of the distal FVA.


Asunto(s)
Artroplastia de Reemplazo de Rodilla/métodos , Fémur/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Adulto , Anciano , Desviación Ósea/diagnóstico por imagen , Desviación Ósea/cirugía , Femenino , Fémur/cirugía , Humanos , Articulación de la Rodilla/cirugía , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/cirugía , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
9.
PLoS One ; 6(5): e19982, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21589873

RESUMEN

BACKGROUND: Recent research shows that visible-light responsive photocatalysts have potential usage in antimicrobial applications. However, the dynamic changes in the damage to photocatalyzed bacteria remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: Facilitated by atomic force microscopy, this study analyzes the visible-light driven photocatalyst-mediated damage of Escherichia coli. Results show that antibacterial properties are associated with the appearance of hole-like structures on the bacteria surfaces. Unexpectedly, these hole-like structures were preferentially induced at the apical terminus of rod shaped E. coli cells. Differentiating the damages into various levels and analyzing the percentage of damage to the cells showed that photocatalysis was likely to elicit sequential damages in E. coli cells. The process began with changing the surface properties on bacterial cells, as indicated in surface roughness measurements using atomic force microscopy, and holes then formed at the apical terminus of the cells. The holes were then subsequently enlarged until the cells were totally transformed into a flattened shape. Parallel experiments indicated that photocatalysis-induced bacterial protein leakage is associated with the progression of hole-like damages, further suggesting pore formation. Control experiments using ultraviolet light responsive titanium-dioxide substrates also obtained similar observations, suggesting that this is a general phenomenon of E. coli in response to photocatalysis. CONCLUSION/SIGNIFICANCE: The photocatalysis-mediated localization-preferential damage to E. coli cells reveals the weak points of the bacteria. This might facilitate the investigation of antibacterial mechanism of the photocatalysis.


Asunto(s)
Escherichia coli/efectos de la radiación , Luz , Catálisis , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Microscopía de Fuerza Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA