Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(6): e2209670120, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36719922

RESUMEN

An optical blackbody is an ideal absorber for all incident optical radiation, and the theoretical study of its radiation spectra paved the way for quantum mechanics (Planck's law). Herein, we propose the concept of an electron blackbody, which is a perfect electron absorber as well as an electron emitter with standard energy spectra at different temperatures. Vertically aligned carbon nanotube arrays are electron blackbodies with an electron absorption coefficient of 0.95 for incident energy ranging from 1 keV to 20 keV and standard electron emission spectra that fit well with the free electron gas model. Such a concept might also be generalized to blackbodies for extreme ultraviolet, X-ray, and γ-ray photons as well as neutrons, protons, and other elementary particles.

2.
Am J Gastroenterol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989869

RESUMEN

OBJECTIVE: Management of intractable childhood constipation is still challenging. The efficacy of retrograde colonic enema (RCE) with fecal microbiota transplantation (FMT) in intractable childhood constipation has not been established although both have demonstrated potential in gastrointestinal diseases. The aim of the current study was to determine the safety and efficacy of RCE-based FMT in the treatment of intractable constipation in children. METHODS: A randomized, double-blind, controlled trial with 110 children was conducted. The subjects were randomly assigned to the FMT with RCE group or the placebo with RCE group. All participants received a daily RCE followed by a 4-week FMT treatment (twice a week) and a 12-week follow-up period. Spontaneous bowel movements (SBMs) ≥ 3 per week were the main outcomes and the risk ratio (RR) with 95% CI was calculated. Changes in the intestinal bacterial profile were analyzed by BOX-PCR-based DNA fingerprinting and sequencing. The adverse effects were assessed based on symptoms. RESULTS: At the end of the follow-up period, 22 patients (40.0%) in the FMT with RCE group and 10 patients (18.2%) in the placebo with RCE group had ≥ 3 SBMs per week (net difference = 21.8%, 95% CI: 13.2%-30.4%; RR: 1.364, 95% CI: 1.063-1.749; P<0.05). Both RCE and FMT enriched the intestinal bacterial diversity of patients with constipation. The adverse events were all mild self-limiting gastrointestinal symptoms. CONCLUSIONS: FMT enhances the efficacy of RCE and the use of RCE-based FMT is a safe and effective method in the treatment of intractable constipation in children.

3.
Environ Toxicol ; 39(1): 199-211, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688783

RESUMEN

PURPOSE: Vitamin D receptors (VDR) play important roles in cardiovascular, immune, metabolic and other functions. Activation of VDR may help improve endothelial dysfunction, atherosclerosis, vascular calcification, and cardiac hypertrophy. However, the specific target genes and mechanisms of VDR in improving Human Umbilical Vein Endothelial Cell (HUVEC) functions remain unclear. This study aims to investigate the function and mechanism of VDR in HUVECs. METHODS: Endothelial dysfunction cell model was constructed by oxidized low-density lipoprotein (ox-LDL). An animal model of atherosclerosis was established in male homozygous Apoe-/- mice (6 weeks) on a high fat diet for 6 weeks. The relationship between VDR and adrenomedullin (ADM) was studied by bioinformatics analysis, ChIP, and luciferase reporter gene analysis. Endothelial cell function was evaluated by Transwell migration and Tube Formation tests. Ferroptosis was detected by measuring intracellular iron content, levels of oxidative stress markers, and ferroptosis related proteins. RESULTS: Overexpression of VDR in HUVECs inhibits ox-LDL-induced endothelial dysfunction and ferroptosis. VDR binds to the ADM promoter sequence and regulates the transcription of ADM. Inhibition of ADM promotes ox-LDL-induced endothelial dysfunction and ferroptosis. ADM regulates ox-LDL-induced endothelial dysfunction and ferroptosis through the AMPK signaling pathway. Overexpression of VDR in Apoe-/- mice inhibited lipid deposition and plaque area in atherosclerotic mice. CONCLUSION: VDR inhibits ox-LDL-induced endothelial dysfunction and ferroptosis by regulating ADM transcription and acting on AMPK signaling pathway. Overexpression of VDR in Apoe-/- mice reduced lipid deposition and plaque area in the thoracic aorta of atherosclerotic mice.


Asunto(s)
Adrenomedulina , Aterosclerosis , Células Endoteliales , Ferroptosis , Receptores de Calcitriol , Transducción de Señal , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Aterosclerosis/metabolismo , Aterosclerosis/patología , Receptores de Calcitriol/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales de la Vena Umbilical Humana , Lipoproteínas LDL/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Adrenomedulina/genética , Adrenomedulina/metabolismo , Dieta Alta en Grasa
4.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38610378

RESUMEN

Originating in the early 20th century, ultrasonic testing has found increasingly extensive applications in medicine, industry, and materials science. Achieving both a high signal-to-noise ratio and high efficiency is crucial in ultrasonic testing. The former means an increase in imaging clarity as well as the detection depth, while the latter facilitates a faster refresh of the image. It is difficult to balance these two indicators with a conventional short pulse to excite the probe, so in general handling methods, these two factors have a trade-off. To solve the above problems, coded excitation (CE) can increase the pulse duration and offers great potential to improve the signal-to-noise ratio with equivalent or even higher efficiency. In this paper, we first review the fundamentals of CE, including signal modulation, signal transmission, signal reception, pulse compression, and optimization methods. Then, we introduce the application of CE in different areas of ultrasonic testing, with a focus on industrial bulk wave single-probe detection, industrial guided wave detection, industrial bulk wave phased array detection, and medical phased array imaging. Finally, we point out the advantages as well as a few future directions of CE.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38777778

RESUMEN

BACKGROUND: Aristolochic acid nephropathy (AAN) is a rapidly progressive interstitial nephropathy caused by Aristolochic acid (AA). AAN is associated with the development of nephropathy and urothelial carcinoma. It is estimated that more than 100 million people worldwide are at risk of developing AAN. However, the underlying mechanisms driving renal deterioration in AAN remain poorly understood, and the treatment options are limited. METHODS: We obtained GSE27168 and GSE136276 series matrix data from the Gene Expression Omnibus (GEO) related to AAN. Using the R Studio environment, we applied the limma package and WGCNA package to identify co-differently expressed genes (co-DEGs). By GO/KEGG/GSVA analysis, we revealed common biological pathways. Subsequently, co-DEGs were subjected to the String database to construct a protein-protein interaction (PPI) network. The MCC algorithms implemented in the Cytohubba plugin were employed to identify hub genes. The hub genes were cross-referenced with the transcription factor (TF) database to identify hub TFs. Immune infiltration analysis was performed to identify key immune cell groups by utilizing CIBERSORT. The expressions of AAN-associated hub TFs were verified in vivo and in vitro. Finally, siRNA intervention was performed on the two TFs to verify their regulatory effect in AAN. RESULTS: Our analysis identified 88 co-DEGs through the "limma" and "WGCNA" R packages. A PPI network comprising 53 nodes and 34 edges was constructed with a confidence level >0.4. ATF3 and c-JUN were identified as hub TFs potentially linked to AAN. Additionally, expressions of ATF3 and c-JUN positively correlated with monocytes, basophils, and vessels, and negatively correlated with eosinophils and endothelial cells. We observed a significant increase in protein and mRNA levels of these two hub TFs. Furthermore, it was found that siRNA intervention targeting ATF3, but not c-JUN, alleviated cell damage induced by AA. The knockdown of ATF3 protects against oxidative stress and inflammation in the AAN cell model. CONCLUSION: This study provides novel insights into the role of ATF3 in AAN. The comprehensive analysis sheds light on the molecular mechanisms and identifies potential biomarkers and drug targets for AAN treatment.


Asunto(s)
Ácidos Aristolóquicos , Enfermedades Renales , Factores de Transcripción , Ácidos Aristolóquicos/toxicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/genética , Animales , Ratones , Humanos , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Mapas de Interacción de Proteínas
6.
Phys Rev Lett ; 130(19): 193603, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37243655

RESUMEN

Nonclassical quantum states are the pivotal features of a quantum system that differs from its classical counterpart. However, the generation and coherent control of quantum states in a macroscopic spin system remain an outstanding challenge. Here we experimentally demonstrate the quantum control of a single magnon in a macroscopic spin system (i.e., 1 mm-diameter yttrium-iron-garnet sphere) coupled to a superconducting qubit via a microwave cavity. By tuning the qubit frequency in situ via the Autler-Townes effect, we manipulate this single magnon to generate its nonclassical quantum states, including the single-magnon state and the superposition of single-magnon state and vacuum (zero magnon) state. Moreover, we confirm the deterministic generation of these nonclassical states by Wigner tomography. Our experiment offers the first reported deterministic generation of the nonclassical quantum states in a macroscopic spin system and paves a way to explore its promising applications in quantum engineering.

7.
Br J Nutr ; 129(3): 381-394, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35473811

RESUMEN

A short-term 2-week (2w) and long-term 8-week (8w) feeding trial was conducted to investigate the effects of low-starch (LS) and high-starch (HS) diets on the growth performance, metabolism and liver health of largemouth bass (Micropterus salmoides). Two isonitrogenous and isolipidic diets containing two levels of starch (LS, 9·06 %; HS, 13·56 %) were fed to largemouth bass. The results indicated that HS diet had no significant effects on specific growth rate during 2w, whereas significantly lowered specific growth rate at 8w. HS diet significantly increased hepatic glycolysis and gluconeogenesis at postprandial 24 h in 2w. The hepatosomatic index, plasma alkaline phosphatase, total bile acid (TBA) levels, and hepatic glycogen, TAG, total cholesterol, TBA, and NEFA contents were significantly increased in the HS group at 2w. Moreover, HS diet up-regulated fatty acid and TAG synthesis-related genes and down-regulated TAG hydrolysis and ß-oxidation-related genes. Therefore, the glucolipid metabolism disorders resulted in metabolic liver disease induced by HS diet at 2w. However, the up-regulation of bile acid synthesis, inflammation and energy metabolism-related genes in 2w indicated that largemouth bass was still in a state of 'self-repair' response. Interestingly, all the metabolic parameters were returned to homoeostasis, with up-regulation of intestinal glucose uptake and transport-related genes, even hepatic histopathological analysis showed no obvious abnormality in the HS group in 8w. In conclusion, HS feed induced short-term acute metabolic disorder, but long-term metabolic adaptation to HS diet was related to repairing metabolism disorders via improving inflammatory responses, bile acid synthesis and energy metabolism. These results strongly indicated that the largemouth bass owned certain adaptability to HS diet.


Asunto(s)
Lubina , Animales , Ácidos y Sales Biliares/metabolismo , Dieta/veterinaria , Metabolismo Energético , Inflamación , Almidón/metabolismo
8.
Nano Lett ; 22(15): 6320-6327, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35894743

RESUMEN

Ultrathin films of intrinsic magnetic topological insulator MnBi2Te4 exhibit fascinating quantum properties such as the quantum anomalous Hall effect and the axion insulator state. In this work, we systematically investigate the evolution of the electronic structure of MnBi2Te4 thin films. With increasing film thickness, the electronic structure changes from an insulator type with a large energy gap to one with in-gap topological surface states, which is, however, still in drastic contrast to the bulk material. By surface doping of alkali-metal atoms, a Rashba split band gradually emerges and hybridizes with topological surface states, which not only reconciles the puzzling difference between the electronic structures of the bulk and thin-film MnBi2Te4 but also provides an interesting platform to establish Rashba ferromagnet that is attractive for (quantum) anomalous Hall effect. Our results provide important insights into the understanding and engineering of the intriguing quantum properties of MnBi2Te4 thin films.

9.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203263

RESUMEN

Castor (Ricinus communis L.) seeds produce abundant ricinoleic acid during seed maturation, which is important for plant development and human demands. Ricinoleic acid, as a unique hydroxy fatty acid (HFA), possesses a distinct bond structure that could be used as a substitute for fossil fuels. Here, we identified all homologous genes related to glycolysis, hydroxy fatty acid biosynthesis, and triacylglycerol (TAG) accumulation in castor seeds. Furthermore, we investigated their expression patterns globally during five seed development stages. We characterized a total of 66 genes involved in the glycolysis pathway, with the majority exhibiting higher expression levels during the early stage of castor bean seed development. This metabolic process provided abundant acetyl-CoA for fatty acid (FA) biosynthesis. Subsequently, we identified 82 genes involved in the processes of de novo FA biosynthesis and TAG assembly, with the majority exhibiting high expression levels during the middle or late stages. In addition, we examined the expression patterns of the transcription factors involved in carbohydrate and oil metabolism. For instance, RcMYB73 and RcERF72 exhibited high expression levels during the early stage, whereas RcWRI1, RcABI3, and RcbZIP67 showed relatively higher expression levels during the middle and late stages, indicating their crucial roles in seed development and oil accumulation. Our study suggests that the high HFA production in castor seeds is attributed to the interaction of multiple genes from sugar transportation to lipid droplet packaging. Therefore, this research comprehensively characterizes all the genes related to glycolysis, fatty acid biosynthesis, and triacylglycerol (TAG) accumulation in the castor and provides novel insight into exploring the genetic mechanisms underlying seed oil accumulation in the endosperm of castor beans.


Asunto(s)
Ricinus communis , Humanos , Ricinus communis/genética , Semillas/genética , Aceite de Ricino/genética , Ácidos Grasos/genética , Triglicéridos
10.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903478

RESUMEN

Chemical synthesis is state-of-the-art, and, therefore, it is generally based on chemical intuition or experience of researchers. The upgraded paradigm that incorporates automation technology and machine learning (ML) algorithms has recently been merged into almost every subdiscipline of chemical science, from material discovery to catalyst/reaction design to synthetic route planning, which often takes the form of unmanned systems. The ML algorithms and their application scenarios in unmanned systems for chemical synthesis were presented. The prospects for strengthening the connection between reaction pathway exploration and the existing automatic reaction platform and solutions for improving autonomation through information extraction, robots, computer vision, and intelligent scheduling were proposed.

11.
Plant Physiol ; 185(4): 1652-1665, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33599750

RESUMEN

The stem cell niche (SCN) is critical in maintaining continuous postembryonic growth of the plant root. During their growth in soil, plant roots are often challenged by various biotic or abiotic stresses, resulting in damage to the SCN. This can be repaired by the reconstruction of a functional SCN. Previous studies examining the SCN's reconstruction often introduce physical damage including laser ablation or surgical excision. In this study, we performed a time-course observation of the SCN reconstruction in pWOX5:icals3m roots, an inducible system that causes non-invasive SCN differentiation upon induction of estradiol on Arabidopsis (Arabidopsis thaliana) root. We found a stage-dependent reconstruction of SCN in pWOX5:icals3m roots, with division-driven anatomic reorganization in the early stage of the SCN recovery, and cell fate specification of new SCN in later stages. During the recovery of the SCN, the local accumulation of auxin was coincident with the cell division pattern, exhibiting a spatial shift in the root tip. In the early stage, division mostly occurred in the neighboring stele to the SCN position, while division in endodermal layers seemed to contribute more in the later stages, when the SCN was specified. The precise re-positioning of SCN seemed to be determined by mutual antagonism between auxin and cytokinin, a conserved mechanism that also regulates damage-induced root regeneration. Our results thus provide time-course information about the reconstruction of SCN in intact Arabidopsis roots, which highlights the stage-dependent re-patterning in response to differentiated quiescent center.


Asunto(s)
Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Meristema/citología , Meristema/crecimiento & desarrollo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Nicho de Células Madre/fisiología , Diferenciación Celular/fisiología , División Celular/fisiología , Variación Genética , Genotipo , Factores de Tiempo
12.
J Chem Inf Model ; 62(20): 4928-4936, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36223527

RESUMEN

Fast and accurate estimation of lipophilicity for organofluorine molecules is in great demand for accelerating drug and materials discovery. A lipophilicity data set of organofluorine molecules (OFL data set), containing 1907 samples, is constructed through density functional theory (DFT) calculations and experimental measurements. An efficient and interpretable model, called PoLogP, is developed to predict the n-octanol/water partition coefficient, log Po/w, of organofluorine molecules on the basis of the descriptors of polarization, which is a combination of polarity descriptors, including the molecular polarity index and molecular polarizability (α), and hydrogen bond (HBs) index, consisting of the number of donors (NHBD) and acceptors (NHBA and NHB-FA). The present PoLogP with a combination of polarity descriptors is demonstrated to perform better than the dipole moment (µ) alone for the F-contained molecules. With the aid of a multilevel attention graph convolutional neural network model, the fast generation of polarity descriptors of organofluorine molecules could be achieved with the DFT accuracy based only on a topological molecular graph structure. The performance of PoLogP is further validated on synthesized organofluorine molecules and 2626 non-fluorinated molecules with satisfactory accuracy, highlighting the potential usage of PoLogP in high-throughput screening of the functional molecules with the desired solubility in various solvent media.


Asunto(s)
Aprendizaje Profundo , 1-Octanol , Solubilidad , Agua/química , Solventes
13.
Phys Chem Chem Phys ; 24(38): 23082-23088, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36134471

RESUMEN

Efficient prediction of the partition coefficient (log P) between polar and non-polar phases could shorten the cycle of drug and materials design. In this work, a descriptor, named 〈q - ACSFs〉conf, is proposed to take the explicit polarization effects in the polar phase and the conformation ensemble of energetic and entropic significance in the non-polar phase into consideration. The polarization effects are involved by embedding the partial charge directly derived from force fields or quantum chemistry calculations into the atom-centered symmetry functions (ACSFs), together with the entropy effects, which are averaged according to the Boltzmann distribution of different conformations taken from the similarity matrix. The model was trained with high-dimensional neural networks (HDNNs) on a public dataset PhysProp (with 41 039 samples). Satisfactory log P prediction performance was achieved on three other datasets, namely, Martel (707 molecules), Star & Non-Star (266) and Huuskonen (1870). The present 〈q - ACSFs〉conf model was also applicable to n-carboxylic acids with the number of carbons ranging from 2 to 14 and 54 kinds of organic solvent. It is easy to apply the present method to arbitrary sized systems and give a transferable atom-based partition coefficient.


Asunto(s)
Ácidos Carboxílicos , Aprendizaje Automático , Entropía , Conformación Molecular , Solventes/química
14.
Gen Comp Endocrinol ; 310: 113811, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33979571

RESUMEN

Forkhead box O1 (FoxO1), a nuclear transcription factor, plays an important role in insulin-mediated glucose metabolism. In this study, FoxO1 gene from largemouth bass (Micropterus salmoides) was cloned and characterized, and its effects on hepatic glucose metabolism regulated by insulin-AKT pathway were investigated in response to glucose or insulin-glucose injection. The full-length cDNA of FoxO1 consisted of 2541 bp and encoded 680 amino acids. Sequence alignments and phylogenetic analysis revealed that FoxO1 exhibited a high degree of conservation among teleost, retaining one forkhead domain, one transactivation domain, and three phosphorylation sites. FoxO1 mRNA was expressed in a wide range of tissues, and high in the brain and liver. Glucose loading resulted in persistent hyperglycemia, and plasma insulin levels remained unchanged except at 1 h. After the insulin-glucose injection, insulin levels were significantly elevated and glucose levels recovered to the basal value after 6 h, which indicated insufficient insulin secretion caused persistent hyperglycemia in this species. Compared with the glucose injection group, transcript levels and enzyme activities of hepatic glycolysis-related genes (GK and PK) were significantly activated, and gluconeogenesis-related genes (PEPCK and G6Pase) were significantly depressed at 3 h after the insulin-glucose injection. Besides, phosphorylation of AKT-FoxO1 pathway was significantly activated. Therefore, insulin improved glucose metabolism by activating the AKT-FoxO1 phosphorylation  to decrease hyperglycemia stress after the meal, which indicated insufficient insulin secretion was the reason for glucose intolerance in largemouth bass. Meanwhile, conserved S267 and S329 phosphorylation sites of FoxO1 were confirmed to be regulated by AKT and mediated the glucose metabolism. In conclusion, activation of insulin-AKT-FoxO1 pathway improved glucose tolerance through mediating glucose metabolism in largemouth bass.


Asunto(s)
Lubina , Glucosa , Animales , Lubina/genética , Lubina/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Gluconeogénesis , Glucosa/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Filogenia
15.
J Integr Plant Biol ; 62(7): 897-911, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31638324

RESUMEN

Root stem cell niche (SCN) consists of a quiescent center (QC) and surrounding stem cells. Disrupted symplastic communication leads to loss of stemness in the whole SCN. Several SCN regulators were reported to move between cells for SCN maintenance. However, single mutant of these regulators is insufficient to abolish QC stemness despite the high differentiation rate in surrounding stem cells. To dissect the mechanism behind such distinct stemness in SCN, we combined the mis-expression strategy with pWOX5:icals3m system in which QC is symplastically isolated. We found the starch accumulation in QC could be synergistically repressed by WUSCHEL-RELATED HOMEOBOX 5 (WOX5), SHORT-ROOT (SHR), SCARCROW (SCR), and PLETHORA (PLT). Like PLTs, other core regulators also exhibited dimorphic functions by inhibiting differentiation at a higher dose while promoting cell division at a low protein level. Being located in the center of the intersected expression zones, QC cells receive the highest level of core regulators, forming the most robust stemness within SCN. WUSCHEL-RELATED HOMEOBOX 5 was sufficient to activate PLT1/2 expression, contributing to the QC-enriched PLTs. Our results provide experimental evidence supporting the long-standing hypothesis that the combination of spatial expression, synergistic function and dosage effect of core regulators result in spatially distinct stemness in SCN.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Meristema/citología , Meristema/genética , Nicho de Células Madre/genética , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Prueba de Complementación Genética , Modelos Biológicos , Mutación/genética , Plantas Modificadas Genéticamente , Células Madre/citología
16.
Mol Cancer ; 18(1): 178, 2019 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-31810483

RESUMEN

Analogous to DNA methylation and histone modification, RNA modification, as another epigenetic layer, plays an important role in many diseases, especially in tumours. As the most common form of RNA modification, m6A methylation has attracted increasing research interest in recent years. m6A is catalysed by RNA methyltransferases METTL3, METTL14 and WTAP (writers), m6A is removed by the demethylases FTO and ALKBH5 (erasers) and interacts with m6A-binding proteins, such as YT521-B homology (YTH) domain-containing proteins. This article reviews recent studies on methylation modification of m6A in gastrointestinal tract cancers.


Asunto(s)
Adenosina/análogos & derivados , Susceptibilidad a Enfermedades , Neoplasias Gastrointestinales/etiología , Neoplasias Gastrointestinales/metabolismo , ARN/genética , ARN/metabolismo , Adenosina/metabolismo , Animales , Biomarcadores , Neoplasias Gastrointestinales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Metilación
17.
J Surg Res ; 200(2): 533-43, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26602038

RESUMEN

BACKGROUND: A rodent occlusal hypofunction model has been widely established in jawbone-related studies. However, the effects of occlusal stimuli, with total elimination of molar contacts, and its rehabilitation on mandibular remodeling remain unclear. MATERIALS AND METHODS: Forty-eight 5-wk-old Sprague-Dawley male rats were used. Twenty-four experimental rats underwent occlusal hypofunction by insertion of a bite-raising appliance. Twenty-four rats received no treatment (control group). Two weeks later, half the experimental rats (occlusal hypofunction group) were killed; the appliance was removed from the remaining experimental rats (recovery group) for two additional weeks before killing. Control animals were killed biweekly. Body weight and masseter muscle weight were measured, and the mandibles were subjected to micro-computed tomography to evaluate the mandibular morphology and cortical bone characteristics. The expressions of osteoblast- and osteoclast-related genes were evaluated with quantitative polymerase chain reaction. RESULTS: No significant body weight differences were observed between the experimental and control rats. However, lighter masseter muscle, shorter mandibular incisor crown, mandibular body and ramus, and higher mandibular alveolar process and first molar fossae were observed in the occlusal hypofunction group. Moreover, the cortical bone characteristics associated with the expression of osteoblast- and osteoclast-related genes were remarkably different in the central and posterior mandible in the occlusal hypofunction group. At the 2-wk recovery time point after occlusal stimuli, the altered parameters in the masseter and mandible returned to normal levels. CONCLUSIONS: Mandibular remodeling via bone turnover is region specific for altered occlusal stimuli. Normal occlusion is an important determinant of the mandibular morphology and architecture.


Asunto(s)
Maloclusión/patología , Mandíbula/patología , Animales , Biomarcadores/metabolismo , Peso Corporal , Densidad Ósea/fisiología , Masculino , Maloclusión/diagnóstico por imagen , Maloclusión/rehabilitación , Mandíbula/diagnóstico por imagen , Mandíbula/metabolismo , Músculo Masetero/patología , Ratas , Ratas Sprague-Dawley , Microtomografía por Rayos X
18.
Asian-Australas J Anim Sci ; 28(5): 691-6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25924961

RESUMEN

The objective of this study was to evaluate the quality of five commercial enzyme linked immunosorbent assay (ELISA) kits (A, B, C, D, and E) from different suppliers for detecting aflatoxin B1 (AFB1). AFB1-free corn samples supplemented with different levels of AFB1 (5, 10, and 20 µg/kg) were used as positive controls and 6 replicates of each control sample were tested to evaluate the accuracy and precision of these kits. In addition, we also evaluated the performance of these ELISA kits for AFB1 in 30 feed samples, including corn, distillers dried grains with soluble, wheat samples, soybean meal, and poultry feed, which were verified by high performance liquid chromatography. Results showed that the coefficients of variation ranged from 1.18% to 16.22% in intra-plate and 2.85% to 18.04% in inter-plate for the determination of AFB1. The half maximal inhibitory concentration for five kits ranged from 3.72 to 7.22 µg/kg. The quantitation limits of AFB1 were all under the legal limit in China but somewhat inconsistent with kit instructions. Although the recovery rate of four of the five kits were either less than 90% or more than 110%, all these values were acceptable in practice. Two kits had high false positive rates (C and E). In conclusion, our results revealed that the qualities of five tested ELISA kits were significantly different.

19.
Microb Drug Resist ; 30(5): 196-202, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579161

RESUMEN

Staphylococcus aureus, the principal causative agent of osteomyelitis, can be internalized by osteoblasts and thereby escape from immune phagocytes and many kinds of antibiotics. To deliver antibiotics into osteoblasts to kill S. aureus in the intracellular environment, we developed gentamicin-loaded chitosan nanoparticles and evaluated their intracellular bactericidal effect. We found decreased numbers of S. aureus cells in infected osteoblasts treated with gentamicin-loaded chitosan nanoparticles. The cytotoxicity of the nanoparticles was evaluated by CCK-8 assay. There was no significant viability decrease at all tested concentrations. In conclusion, our results provide evidence for the potential use of gentamicin-loaded chitosan nanoparticles to enhance the delivery of gentamicin into cells and for their antibacterial effect against internalized S. aureus in the intracellular environment of osteoblasts.


Asunto(s)
Antibacterianos , Quitosano , Gentamicinas , Nanopartículas , Osteoblastos , Staphylococcus aureus , Gentamicinas/farmacología , Quitosano/farmacología , Quitosano/química , Staphylococcus aureus/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Antibacterianos/farmacología , Nanopartículas/química , Animales , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Humanos , Supervivencia Celular/efectos de los fármacos , Ratones
20.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189651

RESUMEN

Power transmission is an important application for magnetorheological (MR) fluid, and the cylinder-type power transmission device is a novel transmission form due to its high stability, higher transmission torque, and large ratio of power to mass. This work designed a novel multi-cylinder transmission device with a water-cooling channel because the MR transmission device, especially high-power MR transmission device, inevitably works in the high-temperature environment. Based on Ohm's law and electromagnetism theory, the magnetic circuit in the novel MR transmission device is designed, and the magnetoresistance was calculated. The finite element method is used to analyze the magnetic field in the device to ensure that the magnetic field in the working gap of MR fluid is strong enough for the MR effects. The temperature of the MR fluid inside the device is analyzed by the finite element method in the natural cooling state and the water-cooling state, respectively, so as to obtain the performance of water cooling. The novel MR transmission device is manufactured to verify its power transmission capability and heat-dissipation performance. The experimental results show that the novel device can transmit a maximum torque of 70 N m, consistent with the rated torque. In addition, compared with natural cooling, the water cooling makes the temperature of the MR fluid to drop by 32.7% under the same working condition. This is the first time that the cooling channel is set up in the cylinder-type MR transmission device, which will provide a solution for the higher power transmission capacity by MR fluid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA