Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Food Sci ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098814

RESUMEN

Biopolymers-based food packaging materials have drawn attention as potential candidates for substitution of petroleum-based materials. In this study, composite alginate films were developed by incorporating Zn-based antimicrobials to overcome the intrinsic disadvantages of alginates that hinder their wide applications. Antimicrobials with different morphologies (nanoplatelets, nanorods, and nanospheres) were employed to investigate the effects of antimicrobials' morphology on antibacterial, thermal, mechanical, and barrier performance of composite alginate films. Meanwhile, morphological and structural characterizations were carried out to explore the interactions between antimicrobials and alginate matrix. Results indicated that films with nanospheres exhibited superior antibacterial property, while those with one-dimensional nanorods possessed better mechanical and barrier performance. Besides, preliminary test on fresh-cut potatoes and chicken breasts indicated that the composite films showed potential in extending shelf life of foods. By incorporating antimicrobials with three different morphologies, this study provides particular insights into improving properties of composite packaging materials.

2.
Front Mater Sci ; 17(1): 230631, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911597

RESUMEN

Microorganisms coexist with human beings and have formed a complex relationship with us. However, the abnormal spread of pathogens can cause infectious diseases thus demands antibacterial agents. Currently available antimicrobials, such as silver ions, antimicrobial peptides and antibiotics, have diverse concerns in chemical stability, biocompatibility, or triggering drug resistance. The "encapsulate-and-deliver" strategy can protect antimicrobials against decomposing, so to avoid large dose release induced resistance and achieve the controlled release. Considering loading capacity, engineering feasibility, and economic viability, inorganic hollow mesoporous spheres (iHMSs) represent one kind of promising and suitable candidates for real-life antimicrobial applications. Here we reviewed the recent research progress of iHMSs-based antimicrobial delivery. We summarized the synthesis of iHMSs and the drug loading method of various antimicrobials, and discussed the future applications. To prevent and mitigate the spread of an infective disease, multilateral coordination at the national level is required. Moreover, developing effective and practicable antimicrobials is the key to enhancing our capability to eliminate pathogenic microbes. We believe that our conclusion will be beneficial for researches on the antimicrobial delivery in both lab and mass production phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA