Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Hum Mol Genet ; 32(7): 1162-1174, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36345169

RESUMEN

ADP-ribosylation factor 1 (ARF1) is a small GTPase that regulates membrane traffic at the Golgi apparatus and endosomes through recruitment of several coat proteins and lipid-modifying enzymes. Here, we report a pediatric patient with an ARF1-related disorder because of a monoallelic de novo missense variant (c.296 G > A; p.R99H) in the ARF1 gene, associated with developmental delay, hypotonia, intellectual disability and motor stereotypies. Neuroimaging revealed a hypoplastic corpus callosum and subcortical white matter abnormalities. Notably, this patient did not exhibit periventricular heterotopias previously observed in other patients with ARF1 variants (including p.R99H). Functional analysis of the R99H-ARF1 variant protein revealed that it was expressed at normal levels and properly localized to the Golgi apparatus; however, the expression of this variant caused swelling of the Golgi apparatus, increased the recruitment of coat proteins such as coat protein complex I, adaptor protein complex 1 and GGA3 and altered the morphology of recycling endosomes. In addition, we observed that the expression of R99H-ARF1 prevented dispersal of the Golgi apparatus by the ARF1-inhibitor brefeldin A. Finally, protein interaction analyses showed that R99H-ARF1 bound more tightly to the ARF1-effector GGA3 relative to wild-type ARF1. These properties were similar to those of the well-characterized constitutively active Q71L-ARF1 mutant, indicating that the pathogenetic mechanism of the R99H-ARF1 variant involves constitutive activation with resultant Golgi and endosomal alterations. The absence of periventricular nodular heterotopias in this R99H-ARF1 subject also indicates that this finding may not be a consistent phenotypic expression of all ARF1-related disorders.


Asunto(s)
Factor 1 de Ribosilacion-ADP , Trastornos del Neurodesarrollo , Humanos , Animales , Ratones , Factor 1 de Ribosilacion-ADP/química , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Mutación Missense , Femenino , Niño , Aparato de Golgi/patología , Endosomas/patología , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología
2.
FASEB J ; 38(13): e23782, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38934375

RESUMEN

N-glycosylation is the most common protein modification in the eukaryotic secretory pathway. It involves the attachment a high mannose glycan to Asn residues in the context of Asn-X-Ser/Thr/Cys, a motif known as N-glycosylation sequon. This process is mediated by STT3A and STT3B, the catalytic subunits of the oligosaccharyltransferase complexes. STT3A forms part of complexes associated with the SEC61 translocon and functions co-translationally. Vacant sequons have another opportunity for glycosylation by complexes carrying STT3B. Local sequence information plays an important role in determining N-glycosylation efficiency, but non-local factors can also have a significant impact. For instance, certain proteins associated with human genetic diseases exhibit abnormal N-glycosylation levels despite having wild-type acceptor sites. Here, we investigated the effect of protein stability on this process. To this end, we generated a family of 40 N-glycan acceptors based on superfolder GFP, and we measured their efficiency in HEK293 cells and in two derived cell lines lacking STT3B or STT3A. Sequon occupancy was highly dependent on protein stability, improving as the thermodynamic stability of the acceptor proteins decreases. This effect is mainly due to the activity of the STT3B-based OST complex. These findings can be integrated into a simple kinetic model that distinguishes local information within sequons from global information of the acceptor proteins.


Asunto(s)
Hexosiltransferasas , Proteínas de la Membrana , Procesamiento Proteico-Postraduccional , Humanos , Glicosilación , Células HEK293 , Hexosiltransferasas/metabolismo , Hexosiltransferasas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Estabilidad Proteica , Polisacáridos/metabolismo
3.
PLoS Biol ; 19(7): e3001287, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34283825

RESUMEN

The accumulation of α-synuclein (α-syn) aggregates in specific brain regions is a hallmark of synucleinopathies including Parkinson disease (PD). α-Syn aggregates propagate in a "prion-like" manner and can be transferred inside lysosomes to recipient cells through tunneling nanotubes (TNTs). However, how lysosomes participate in the spreading of α-syn aggregates is unclear. Here, by using super-resolution (SR) and electron microscopy (EM), we find that α-syn fibrils affect the morphology of lysosomes and impair their function in neuronal cells. In addition, we demonstrate that α-syn fibrils induce peripheral redistribution of lysosomes, likely mediated by transcription factor EB (TFEB), increasing the efficiency of α-syn fibrils' transfer to neighboring cells. We also show that lysosomal membrane permeabilization (LMP) allows the seeding of soluble α-syn in cells that have taken up α-syn fibrils from the culture medium, and, more importantly, in healthy cells in coculture, following lysosome-mediated transfer of the fibrils. Moreover, we demonstrate that seeding occurs mainly at lysosomes in both donor and acceptor cells, after uptake of α-syn fibrils from the medium and following their transfer, respectively. Finally, by using a heterotypic coculture system, we determine the origin and nature of the lysosomes transferred between cells, and we show that donor cells bearing α-syn fibrils transfer damaged lysosomes to acceptor cells, while also receiving healthy lysosomes from them. These findings thus contribute to the elucidation of the mechanism by which α-syn fibrils spread through TNTs, while also revealing the crucial role of lysosomes, working as a Trojan horse for both seeding and propagation of disease pathology.


Asunto(s)
Lisosomas/metabolismo , Nanotubos , Pliegue de Proteína , alfa-Sinucleína/metabolismo , Animales , Permeabilidad de la Membrana Celular , Técnicas de Cocultivo , Humanos , Lisosomas/ultraestructura , Microscopía Electrónica
4.
J Cell Sci ; 134(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34622922

RESUMEN

The Autophagy, Inflammation and Metabolism (AIM) Center organized a globally accessible, virtual eSymposium during the COVID-19 pandemic in 2020. The conference included presentations from scientific leaders, as well as a career discussion panel, and provided a much-needed platform for early-career investigators (ECIs) to showcase their research in autophagy. This Perspective summarizes the science presented by the ECIs during the event and discusses the lessons learned from a virtual meeting of this kind during the pandemic. The meeting was a learning experience for all involved, and the ECI participants herein offer their thoughts on the pros and cons of virtual meetings as a modality, either as standalone or hybrid events, with a view towards the post-pandemic world.


Asunto(s)
COVID-19 , Pandemias , Autofagia , Humanos , Inflamación , SARS-CoV-2
5.
Proc Biol Sci ; 290(1997): 20230124, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37122256

RESUMEN

To attain a faculty position, postdoctoral fellows submit job applications that require considerable time and effort to produce. Although mentors and colleagues review these applications, postdocs rarely receive iterative feedback from reviewers with the breadth of expertise typically found on an academic search committee. To address this gap, we describe an international peer-reviewing programme for postdocs across disciplines to receive reciprocal, iterative feedback on faculty applications. A participant survey revealed that nearly all participants would recommend the programme to others. Furthermore, our programme was more likely to attract postdocs who struggled to find mentoring, possibly because of their identity as a woman or member of an underrepresented population in STEM or because they changed fields. Between 2018 and 2021, our programme provided nearly 150 early career academics with a diverse and supportive community of peer mentors during the difficult search for a faculty position and continues to do so today. As the transition from postdoc to faculty represents the largest 'leak' in the academic pipeline, implementation of similar programmes by universities or professional societies would provide psycho-social support necessary to prevent attrition of individuals from underrepresented populations as well as increase the chances of success for early career academics in their search for independence.


Asunto(s)
Tutoría , Femenino , Humanos , Proyectos Piloto , Mentores , Docentes , Grupo Paritario
6.
PLoS Biol ; 17(5): e3000279, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31100061

RESUMEN

We report the development and characterization of a method, named reversible association with motor proteins (RAMP), for manipulation of organelle positioning within the cytoplasm. RAMP consists of coexpressing in cultured cells (i) an organellar protein fused to the streptavidin-binding peptide (SBP) and (ii) motor, neck, and coiled-coil domains from a plus-end-directed or minus-end-directed kinesin fused to streptavidin. The SBP-streptavidin interaction drives accumulation of organelles at the plus or minus end of microtubules, respectively. Importantly, competition of the streptavidin-SBP interaction by the addition of biotin to the culture medium rapidly dissociates the motor construct from the organelle, allowing restoration of normal patterns of organelle transport and distribution. A distinctive feature of this method is that organelles initially accumulate at either end of the microtubule network in the initial state and are subsequently released from this accumulation, allowing analyses of the movement of a synchronized population of organelles by endogenous motors.


Asunto(s)
Técnicas Citológicas/métodos , Proteínas Motoras Moleculares/metabolismo , Orgánulos/metabolismo , Estreptavidina/metabolismo , Axones/metabolismo , Axones/ultraestructura , Transporte Biológico , Biotina/metabolismo , Dendritas/metabolismo , Dendritas/ultraestructura , Células HeLa , Humanos , Orgánulos/ultraestructura , Reproducibilidad de los Resultados
7.
Proc Natl Acad Sci U S A ; 114(50): E10697-E10706, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29180427

RESUMEN

AP-4 is a member of the heterotetrameric adaptor protein (AP) complex family involved in protein sorting in the endomembrane system of eukaryotic cells. Interest in AP-4 has recently risen with the discovery that mutations in any of its four subunits cause a form of hereditary spastic paraplegia (HSP) with intellectual disability. The critical sorting events mediated by AP-4 and the pathogenesis of AP-4 deficiency, however, remain poorly understood. Here we report the identification of ATG9A, the only multispanning membrane component of the core autophagy machinery, as a specific AP-4 cargo. AP-4 promotes signal-mediated export of ATG9A from the trans-Golgi network to the peripheral cytoplasm, contributing to lipidation of the autophagy protein LC3B and maturation of preautophagosomal structures. These findings implicate AP-4 as a regulator of autophagy and altered autophagy as a possible defect in AP-4-deficient HSP.


Asunto(s)
Complejo 4 de Proteína Adaptadora/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complejo 4 de Proteína Adaptadora/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Animales , Autofagia , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(14): E2955-E2964, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28320970

RESUMEN

The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes.


Asunto(s)
Axones/metabolismo , Cinesinas/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Neuronas/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Animales , Autofagosomas/metabolismo , Transporte Biológico , Células Cultivadas , Dendritas/metabolismo , Hipocampo/citología , Cinesinas/genética , Complejos Multiproteicos/genética , Ratas , Ratas Transgénicas , Factores de Transcripción/metabolismo
9.
J Cell Sci ; 129(23): 4329-4339, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27799357

RESUMEN

Lysosomes have been classically considered terminal degradative organelles, but in recent years they have been found to participate in many other cellular processes, including killing of intracellular pathogens, antigen presentation, plasma membrane repair, cell adhesion and migration, tumor invasion and metastasis, apoptotic cell death, metabolic signaling and gene regulation. In addition, lysosome dysfunction has been shown to underlie not only rare lysosome storage disorders but also more common diseases, such as cancer and neurodegeneration. The involvement of lysosomes in most of these processes is now known to depend on the ability of lysosomes to move throughout the cytoplasm. Here, we review recent findings on the mechanisms that mediate the motility and positioning of lysosomes, and the importance of lysosome dynamics for cell physiology and pathology.


Asunto(s)
Lisosomas/metabolismo , Animales , Transporte Biológico , Movimiento Celular , Humanos , Microtúbulos/metabolismo , Modelos Biológicos
10.
J Biol Chem ; 290(52): 30736-49, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26542808

RESUMEN

The heterotetrameric (ϵ-ß4-µ4-σ4) complex adaptor protein 4 (AP-4) is a component of a non-clathrin coat involved in protein sorting at the trans-Golgi network (TGN). Considerable interest in this complex has arisen from the recent discovery that mutations in each of its four subunits are the cause of a congenital intellectual disability and movement disorder in humans. Despite its physiological importance, the structure and function of this coat remain poorly understood. To investigate the assembly of the AP-4 coat, we dissected the determinants of interaction of AP-4 with its only known accessory protein, the ENTH/VHS-domain-containing protein tepsin. Using a variety of protein interaction assays, we found that tepsin comprises two phylogenetically conserved peptide motifs, [GS]LFXG[ML]X[LV] and S[AV]F[SA]FLN, within its C-terminal unstructured region, which interact with the C-terminal ear (or appendage) domains of the ß4 and ϵ subunits of AP-4, respectively. Structure-based mutational analyses mapped the binding site for the [GS]LFXG[ML]X[LV] motif to a conserved, hydrophobic surface on the ß4-ear platform fold. Both peptide-ear interactions are required for efficient association of tepsin with AP-4, and for recruitment of tepsin to the TGN. The bivalency of the interactions increases the avidity of tepsin for AP-4 and may enable cross-linking of multiple AP-4 heterotetramers, thus contributing to the assembly of the AP-4 coat. In addition to revealing critical aspects of this coat, our findings extend the paradigm of peptide-ear interactions, previously established for clathrin-AP-1/AP-2 coats, to a non-clathrin coat.


Asunto(s)
Complejo 4 de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Complejo 4 de Proteína Adaptadora/química , Complejo 4 de Proteína Adaptadora/genética , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Dimerización , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia , Red trans-Golgi/metabolismo
11.
Glycobiology ; 24(5): 428-41, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24451991

RESUMEN

Galectin-1 (Gal-1), a member of a family of multifunctional lectins, plays key roles in diverse biological processes including cell signaling, immunomodulation, neuroprotection and angiogenesis. The presence of an unusual number of six cysteine residues within Gal-1 sequence prompted a detailed analysis of the impact of the redox environment on the functional activity of this lectin. We examined the role of each cysteine residue in the structure and function of Gal-1 using both experimental and computational approaches. Our results show that: (i) only three cysteine residues present in each carbohydrate recognition domain (CRD) (Cys2, Cys16 and Cys88) were important in protein oxidation, (ii) oxidation promoted the formation of the Cys16-Cys88 disulfide bond, as well as multimers through Cys2, (iii) the oxidized protein did not bind to lactose, probably due to poor interactions with Arg48 and Glu71, (iv) in vitro oxidation by air was completely reversible and (v) oxidation by hydrogen peroxide was relatively slow (1.7 ± 0.2 M(-1) s(-1) at pH 7.4 and 25°C). Finally, an analysis of key cysteines in other human galectins is also provided in order to predict their behaviour in response to redox variations. Collectively, our data provide new insights into the structural basis of Gal-1 redox regulation with critical implications in physiology and pathology.


Asunto(s)
Galectina 1/química , Peróxido de Hidrógeno/metabolismo , Simulación de Dinámica Molecular , Humanos , Oxidación-Reducción , Estructura Terciaria de Proteína
12.
Autophagy ; 19(2): 678-691, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35838483

RESUMEN

ABBREVIATIONS: BCL2: BCL2 apoptosis regulator; BCL10: BCL10 immune signaling adaptor; CARD11: caspase recruitment domain family member 11; CBM: CARD11-BCL10-MALT1; CR2: complement C3d receptor 2; EBNA: Epstein Barr nuclear antigen; EBV: Epstein-Barr virus; FCGR3A; Fc gamma receptor IIIa; GLILD: granulomatous-lymphocytic interstitial lung disease; HV: healthy volunteer; IKBKB/IKB kinase: inhibitor of nuclear factor kappa B kinase subunit beta; IL2RA: interleukin 2 receptor subunit alpha; MALT1: MALT1 paracaspase; MS4A1: membrane spanning 4-domain A1; MTOR: mechanistic target of rapamycin kinase; MYC: MYC proto-oncogene, bHLH: transcription factor; NCAM1: neural cell adhesion molecule 1; NFKB: nuclear factor kappa B; NIAID: National Institute of Allergy and Infectious Diseases; NK: natural killer; PTPRC: protein tyrosine phosphatase receptor type C; SELL: selectin L; PBMCs: peripheral blood mononuclear cells; TR: T cell receptor; Tregs: regulatory T cells; WT: wild-type.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Humanos , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Herpesvirus Humano 4 , Hiperplasia , Leucocitos Mononucleares/metabolismo , Proteínas de la Membrana/genética , Mutación , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas de Transporte Vesicular/genética
13.
Methods Mol Biol ; 2473: 285-306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35819772

RESUMEN

Lysosomes are membrane-bound organelles that degrade diverse biomolecules and regulate a multitude of other essential processes including cell growth and metabolism, signaling, plasma membrane repair and infection. Such diverse functions of lysosomes are highly coordinated in space and time and are therefore tightly coupled to the directional transport of the organelles within the cytoplasm. Thus, robust quantitative assessments of lysosome positioning within the cell provide a valuable tool for researchers interested in understanding these multifunctional organelles. Here, we present point-by-point methodology to measure lysosome positioning by two straight forward and widely used techniques: shell analysis and line scan.


Asunto(s)
Lisosomas , Transducción de Señal , Lisosomas/metabolismo
14.
J Cell Biol ; 221(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35579602

RESUMEN

Neuregulins (NRGs) are EGF-like ligands associated with cognitive disorders. Unprocessed proNRG3 is cleaved by BACE1 to generate the mature membrane-bound NRG3 ligand, but the subcellular site of proNRG3 cleavage, mechanisms underlying its transport into axons, and presynaptic accumulation remain unknown. Using an optogenetic proNRG3 cleavage reporter (LA143-NRG3), we investigate the spatial-temporal dynamics of NRG3 processing and sorting in neurons. In dark conditions, unprocessed LA143-NRG3 is retained in the trans-Golgi network but, upon photoactivation, is cleaved by BACE1 and released from the TGN. Mature NRG3 then emerges on the somatodendritic plasma membrane from where it is re-endocytosed and anterogradely transported on Rab4+ vesicles into axons via transcytosis. By contrast, the BACE1 substrate APP is sorted into axons on Rab11+ vesicles. Lastly, by a mechanism we denote "trans-synaptic retention," NRG3 accumulates at presynaptic terminals by stable interaction with its receptor ErbB4 on postsynaptic GABAergic interneurons. We propose that trans-synaptic retention may account for polarized expression of other neuronal transmembrane ligands and receptors.


Asunto(s)
Axones , Neurregulinas , Receptor ErbB-4 , Transcitosis , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Axones/metabolismo , Células HEK293 , Humanos , Ligandos , Ratones , Neurregulinas/genética , Neurregulinas/metabolismo , Ratas , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo
15.
Biochemistry ; 50(37): 7842-57, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21848324

RESUMEN

In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings.


Asunto(s)
Galectinas/química , Galectinas/fisiología , Polisacáridos/química , Polisacáridos/fisiología , Animales , Fenómenos Bioquímicos , Cristalografía por Rayos X/métodos , Humanos , Unión Proteica/fisiología
16.
J Chem Inf Model ; 51(8): 1918-30, 2011 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-21702482

RESUMEN

Galectins, a family of evolutionarily conserved animal lectins, have been shown to modulate signaling processes leading to inflammation, apoptosis, immunoregulation, and angiogenesis through their ability to interact with poly-N-acetyllactosamine-enriched glycoconjugates. To date 16 human galectin carbohydrate recognition domains have been established by sequence analysis and found to be expressed in several tissues. Given the divergent functions of these lectins, it is of vital importance to understand common and differential features in order to search for specific inhibitors of individual members of the human galectin family. In this work we performed an integrated computational analysis of all individual members of the human galectin family. In the first place, we have built homology-based models for galectin-4 and -12 N-terminus, placental protein 13 (PP13) and PP13-like protein for which no experimental structural information is available. We have then performed classical molecular dynamics simulations of the whole 15 members family in free and ligand-bound states to analyze protein and protein-ligand interaction dynamics. Our results show that all galectins adopt the same fold, and the carbohydrate recognition domains are very similar with structural differences located in specific loops. These differences are reflected in the dynamics characteristics, where mobility differences translate into entropy values which significantly influence their ligand affinity. Thus, ligand selectivity appears to be modulated by subtle differences in the monosaccharide binding sites. Taken together, our results may contribute to the understanding, at a molecular level, of the structural and dynamical determinants that distinguish individual human galectins.


Asunto(s)
Galectina 4/análisis , Galectinas/análisis , Polisacáridos/metabolismo , Proteínas Gestacionales/análisis , Transducción de Señal/fisiología , Biología de Sistemas/métodos , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Bases de Datos de Proteínas , Entropía , Epítopos , Galectina 4/química , Galectina 4/inmunología , Galectina 4/metabolismo , Galectinas/química , Galectinas/inmunología , Galectinas/metabolismo , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Filogenia , Polisacáridos/inmunología , Proteínas Gestacionales/química , Proteínas Gestacionales/inmunología , Proteínas Gestacionales/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
17.
Mol Biol Cell ; 32(21): ar25, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34432492

RESUMEN

Autophagy-related protein 9 (ATG9) is a transmembrane protein component of the autophagy machinery that cycles between the trans-Golgi network (TGN) in the perinuclear area and other compartments in the peripheral area of the cell. In mammalian cells, export of the ATG9A isoform from the TGN into ATG9A-containing vesicles is mediated by the adaptor protein 4 (AP-4) complex. However, the mechanisms responsible for the subsequent distribution of these vesicles to the cell periphery are unclear. Herein we show that the AP-4-accessory protein RUSC2 couples ATG9A-containing vesicles to the plus-end-directed microtubule motor kinesin-1 via an interaction between a disordered region of RUSC2 and the kinesin-1 light chain. This interaction is counteracted by the microtubule-associated protein WDR47. These findings uncover a mechanism for the peripheral distribution of ATG9A-containing vesicles involving the function of RUSC2 as a kinesin-1 adaptor and WDR47 as a negative regulator of this function.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagosomas/metabolismo , Autofagia , Proteínas Portadoras/fisiología , Células HEK293 , Células HeLa , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Transporte de Proteínas/fisiología , Red trans-Golgi/metabolismo
18.
Nat Commun ; 12(1): 4552, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315878

RESUMEN

The ability of endolysosomal organelles to move within the cytoplasm is essential for the performance of their functions. Long-range movement involves coupling of the endolysosomes to motor proteins that carry them along microtubule tracks. This movement is influenced by interactions with other organelles, but the mechanisms involved are incompletely understood. Herein we show that the sorting nexin SNX19 tethers endolysosomes to the endoplasmic reticulum (ER), decreasing their motility and contributing to their concentration in the perinuclear area of the cell. Tethering depends on two N-terminal transmembrane domains that anchor SNX19 to the ER, and a PX domain that binds to phosphatidylinositol 3-phosphate on the endolysosomal membrane. Two other domains named PXA and PXC negatively regulate the interaction of SNX19 with endolysosomes. These studies thus identify a mechanism for controlling the motility and positioning of endolysosomes that involves tethering to the ER by a sorting nexin.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Nexinas de Clasificación/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/ultraestructura , Endosomas/ultraestructura , Humanos , Lisosomas/ultraestructura , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Nexinas de Clasificación/química
19.
Nat Commun ; 12(1): 6750, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799570

RESUMEN

The multispanning membrane protein ATG9A is a scramblase that flips phospholipids between the two membrane leaflets, thus contributing to the expansion of the phagophore membrane in the early stages of autophagy. Herein, we show that depletion of ATG9A does not only inhibit autophagy but also increases the size and/or number of lipid droplets in human cell lines and C. elegans. Moreover, ATG9A depletion blocks transfer of fatty acids from lipid droplets to mitochondria and, consequently, utilization of fatty acids in mitochondrial respiration. ATG9A localizes to vesicular-tubular clusters (VTCs) that are tightly associated with an ER subdomain enriched in another multispanning membrane scramblase, TMEM41B, and also in close proximity to phagophores, lipid droplets and mitochondria. These findings indicate that ATG9A plays a critical role in lipid mobilization from lipid droplets to autophagosomes and mitochondria, highlighting the importance of ATG9A in both autophagic and non-autophagic processes.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Animales Modificados Genéticamente , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Movilización Lipídica , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Transporte Vesicular/genética
20.
Biochemistry ; 49(35): 7652-8, 2010 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-20666428

RESUMEN

The stability of proteins involves a critical balance of interactions of different orders of magnitude. In this work, we present experimental evidence of an increased thermal stability of galectin-1, a multifunctional beta-galactoside-binding protein, upon binding to the disaccharide lactose. Analysis of structural changes occurring upon binding of lectin to its specific glycans and thermal denaturation of the protein and the complex were analyzed by circular dichroism. On the other hand, we studied dimerization as another factor that may induce structural and thermal stability changes. The results were then complemented with molecular dynamics simulations followed by a detailed computation of thermodynamic properties, including the internal energy, solvation free energy, and conformational entropy. In addition, an energetic profile of the binding and dimerization processes is also presented. Whereas binding and cross-linking of lactose do not alter galectin-1 structure, this interaction leads to substantial changes in the flexibility and internal energy of the protein which confers increased thermal stability to this endogenous lectin. Given that an improved understanding of the physicochemical properties of galectin-glycan lattices may contribute to the dissection of their biological functions and prediction of their therapeutic applications, our study suggests that galectin binding to specific disaccharide ligands may increase the thermal stability of this glycan-binding protein, an effect that could influence its critical biological functions.


Asunto(s)
Galactósidos/química , Galactósidos/metabolismo , Galectina 1/química , Sitios de Unión , Dimerización , Galectina 1/metabolismo , Humanos , Ligandos , Modelos Moleculares , Pliegue de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA