Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Neurosci ; 18: 1391407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099631

RESUMEN

Introduction: Girls and boys presenting disruptive behavior disorders (DBDs) display differences in white matter microstructure (WMM) relative to typically developing (TD) sex-matched peers. Boys with DBDs are at increased risk for traumatic brain injuries (TBIs), which are also known to impact WMM. This study aimed to disentangle associations of WMM with DBDs and TBIs. Methods: The sample included 673 children with DBDs and 836 TD children, aged 9-10, from the Adolescent Brain Cognitive Development Study. Thirteen white matter bundles previously associated with DBDs were the focus of study. Analyses were undertaken separately by sex, adjusting for callous-unemotional traits (CU), attention-deficit hyperactivity disorder (ADHD), age, pubertal stage, IQ, ethnicity, and family income. Results: Among children without TBIs, those with DBDs showed sex-specific differences in WMM of several tracts relative to TD. Most differences were associated with ADHD, CU, or both. Greater proportions of girls and boys with DBDs than sex-matched TD children had sustained TBIs. Among girls and boys with DBDs, those who had sustained TBIs compared to those not injured, displayed WMM alterations that were robust to adjustment for all covariates. Across most DBD/TD comparisons, axonal density scores were higher among children presenting DBDs. Discussion: In conclusion, in this community sample of children, those with DBDs were more likely to have sustained TBIs that were associated with additional, sex-specific, alterations of WMM. These additional alterations further compromise the future development of children with DBDs.

2.
Front Neurol ; 15: 1400601, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144703

RESUMEN

Introduction: Operculo-insular epilepsy (OIE) is a rare condition amenable to surgery in well-selected cases. Despite the high rate of neurological complications associated with OIE surgery, most postoperative deficits recover fully and rapidly. We provide insights into this peculiar pattern of functional recovery by investigating the longitudinal reorganization of structural networks after surgery for OIE in 10 patients. Methods: Structural T1 and diffusion-weighted MRIs were performed before surgery (t0) and at 6 months (t1) and 12 months (t2) postoperatively. These images were processed with an original, comprehensive structural connectivity pipeline. Using our method, we performed comparisons between the t0 and t1 timepoints and between the t1 and t2 timepoints to characterize the progressive structural remodeling. Results: We found a widespread pattern of postoperative changes primarily in the surgical hemisphere, most of which consisted of reductions in connectivity strength (CS) and regional graph theoretic measures (rGTM) that reflect local connectivity. We also observed increases in CS and rGTMs predominantly in regions located near the resection cavity and in the contralateral healthy hemisphere. Finally, most structural changes arose in the first six months following surgery (i.e., between t0 and t1). Discussion: To our knowledge, this study provides the first description of postoperative structural connectivity changes following surgery for OIE. The ipsilateral reductions in connectivity unveiled by our analysis may result from the reversal of seizure-related structural alterations following postoperative seizure control. Moreover, the strengthening of connections in peri-resection areas and in the contralateral hemisphere may be compatible with compensatory structural plasticity, a process that could contribute to the recovery of functions seen following operculo-insular resections for focal epilepsy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA