RESUMEN
There is a growing body of evidence that therapy-related myeloid neoplasms (t-MNs) with driver gene mutations arise in the background of clonal hematopoiesis (CH) under the positive selective pressure of chemo- and radiation therapies. Uncovering the exposure relationships that provide selective advantage to specific CH mutations is critical to understanding the pathogenesis and etiology of t-MNs. In a systematic analysis of 416 patients with t-MN and detailed prior exposure history, we found that TP53 mutations were significantly associated with prior treatment with thalidomide analogs, specifically lenalidomide. We demonstrated experimentally that lenalidomide treatment provides a selective advantage to Trp53-mutant hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, the effect of which was specific to Trp53-mutant HSPCs and was not observed in HSPCs with other CH mutations. Because of the differences in CK1α degradation, pomalidomide treatment did not provide an equivalent level of selective advantage to Trp53-mutant HSPCs, providing a biological rationale for its use in patients at high risk for t-MN. These findings highlight the role of lenalidomide treatment in promoting TP53-mutated t-MNs and offer a potential alternative strategy to mitigate the risk of t-MN development.
Asunto(s)
Neoplasias Primarias Secundarias , Talidomida , Humanos , Lenalidomida/farmacología , Talidomida/efectos adversos , Células Madre Hematopoyéticas/metabolismo , Genes p53 , Mutación , Neoplasias Primarias Secundarias/etiología , Neoplasias Primarias Secundarias/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Malignancies are reliant on glutamine as an energy source and a facilitator of aberrant DNA methylation. We demonstrate preclinical synergy of telaglenastat (CB-839), a selective glutaminase inhibitor, combined with azacytidine (AZA), followed by a single-arm, open-label, phase 1b/2 study in persons with advanced myelodysplastic syndrome (MDS). The dual primary endpoints evaluated clinical activity, safety and tolerability; secondary endpoints evaluated pharmacokinetics, pharmacodynamics, overall survival, event-free survival and duration of response. The dose-escalation study included six participants and the dose-expansion study included 24 participants. Therapy was well tolerated and led to an objective response rate of 70% with (marrow) complete remission in 53% of participants and a median overall survival of 11.6 months, with evidence of myeloid differentiation in responders determined by single-cell RNA sequencing. Glutamine transporter solute carrier family 38 member 1 in MDS stem cells was associated with clinical responses and predictive of worse prognosis in a large MDS cohort. These data demonstrate the safety and efficacy of CB-839 and AZA as a combined metabolic and epigenetic approach in MDS. ClinicalTrials.gov identifier: NCT03047993 .
Asunto(s)
Azacitidina , Glutaminasa , Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/tratamiento farmacológico , Glutaminasa/antagonistas & inhibidores , Masculino , Femenino , Anciano , Persona de Mediana Edad , Azacitidina/uso terapéutico , Azacitidina/farmacología , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Adulto , Tiadiazoles/uso terapéutico , Tiadiazoles/farmacología , Tiadiazoles/administración & dosificación , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , BencenoacetamidasRESUMEN
The prognosis of adult acute myeloid leukemia (AML) remains poor, with the long-term survival rate less than 50%. However, the current paradigms of treatment are changing through a better understanding of the disease genetics and pathophysiology. Since 2017, eight new drugs have been approved by the U.S. Food and Drug Administration for the treatment of AML, including the FLT3 inhibitors midostaurin and gilteritinib, the IDH inhibitors ivosidenib and enasidenib, the anti-CD33 monoclonal antibody gemtuzumab ozogamicin, liposomal daunorubicin and cytarabine, the hedgehog pathway inhibitor glasdegib and the BCL-2 inhibitor venetoclax. Preclinical data demonstrated the anti-leukemic efficacy of venetoclax in AML and its synergy when combined with hypomethylating agents or chemotherapy agents. Clinical trials have demonstrated the clinical benefit of venetoclax-based therapies in newly diagnosed AML, leading to the recent FDA approval of venetoclax in combination with hypomethylating agents or low-dose cytarabine for older adults with newly diagnosed AML. Herein, we focus on the role of single-agent BCL-2 inhibition in AML and review the clinical studies of venetoclax-based combination regimens and the evolving mechanisms of resistance.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Sulfonamidas/uso terapéutico , Aminopiridinas/uso terapéutico , Bencimidazoles/uso terapéutico , Ensayos Clínicos como Asunto , Citarabina/uso terapéutico , Daunorrubicina/uso terapéutico , Glicina/análogos & derivados , Glicina/uso terapéutico , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Compuestos de Fenilurea/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Piridinas/uso terapéutico , Triazinas/uso terapéuticoRESUMEN
Adult acute lymphoblastic leukemia (ALL) has a poor overall survival compared with pediatric ALL where cure rates are observed in more than 90% of patients. The recent development of novel monoclonal antibodies targeting CD20, CD19, and CD22 has changed the long-term outcome of this disease, both in the frontline setting (e.g. rituximab) and for patients with relapsed/refractory disease (e.g. inotuzumab ozogamicin and blinatumomab). The CD3-CD19 bispecific T-cell-engaging antibody blinatumomab is also the first drug approved in ALL for patients with persistent or recurrent measurable residual disease, providing a new treatment paradigm for these patients. Several new agents are also in development that use novel constructs or target alternative surface epitopes such as CD123, CD25, and CD38. Herein, we review the role of monoclonal antibodies in adult ALL and summarize the current and future approaches in ALL, including novel combination therapies and the possibility of early incorporation of these agents into treatment regimens.