Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Neurol ; 20(1): 250, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32563250

RESUMEN

BACKGROUND: Post-stroke depression (PSD) is a mood disorder characterized by depression and anhedonia caused by stroke. Metabolomics identified metabolites associated with PSD, but previous studies are based on gas chromatography (GC)/mass spectrometry (MS). This study aimed to perform a liquid chromatography (LC)-MS-based metabolomics study of the plasma metabolite profiles between patients with PSD and controls. METHODS: This was a prospective study of patients with stroke enrolled between July and December 2017 at the Second Affiliated Hospital of Nanchang University. Patients were grouped as Hamilton Depression Rating Scale > 7 (PSD) or < 7 (controls). Metabonomics profiling of plasma sampled was conducted by LC-MS. By combining multivariable and univariable statistical analyses, significant differential metabolites between the two groups were screened. The threshold for significant differences was VIP ≥1 and P < 0.05. Log2FC is the logarithm of the mean ratio between the two groups. RESULTS: There were no significant difference with respect to age, NIHSS score, and MMSE between the two groups (all P > 0.05). There were six differential metabolites between the PSD and stroke groups, of which three metabolites were increased and three were decreased. Compared with the control group, p-chlorophenylalanine (Log2FC = 1.37, P = 0.03), phenylacetyl glutamine (Log2FC = 0.21, P = 0.048), and DHA (Log2FC = 0.77, P = 0.01) levels were higher in the PSD group, while betaine (trimethylglycine) (Log2FC = - 0.79, P = 0.04), palmitic acid (Log2FC = - 0.51, P = 0.001), and MHPG-SO4 (Log2FC = - 2.37, P = 0.045) were decreased. CONCLUSION: Plasma metabolomics showed that amino acid metabolism (phenylacetyl glutamine, p-chlorophenylalanine, trimethylglycine), lipid metabolism (DHA, palmitic acid, trimethylglycine), and oxidative stress (DHA, palmitic acid, trimethylglycine) were associated with PSD. These results could help to reveal the pathophysiological mechanism of PSD and eventually identify treatment targets.


Asunto(s)
Aminoácidos/metabolismo , Depresión/metabolismo , Metabolismo de los Lípidos/fisiología , Estrés Oxidativo/fisiología , Accidente Cerebrovascular/complicaciones , Anciano , Depresión/etiología , Femenino , Humanos , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Estudios Prospectivos , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/psicología
2.
Biochem Biophys Res Commun ; 511(2): 440-446, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30808545

RESUMEN

The association between dysregulated serotonergic activity and major depressive disorder (MDD) is well known. However, the various mechanisms underlying serotonergic dysregulation in MDD remain unclear. Previous research on serotonergic (5-HT) neurons identified microRNA-26a (miR-26a) targeting of the serotonin autoreceptor, 5-HT receptor 1A (HTR1A). Reporter assays with the Htr1a 5'UTR sequence were performed in vitro. Adult transgenic mouse models altering miR-26a-2 and Htr1a expression were used for chronic social defeat, antidepressant treatment, and in vivo lentiviral experiments. Mice were tested for anxiety-like behavior using the elevated plus-maze, dark-light transfer, and open-field tests, and for depression-like behavior using the forced-swim test. We confirmed that miR-26a-2 downregulates Htr1a expression in 5-HT neurons in vitro. miR-26a-2 levels were significantly upregulated in the mouse dorsal raphe nucleus (DRN) following antidepressant therapy. The transgenic murine model overexpressing miR-26a-2 in serotonergic neurons displayed improved behavioral resiliency to social defeat. These effects were abrogated by the addition of Htr1a overexpression. In contrast, the transgenic murine model with miR-26a-2 knockdown in serotonergic neurons displayed increased anxious behavior and weakened antidepressant response. These effects were rescued by silencing Htr1a expression. Our findings suggest that miR-26a-2 functions as an endogenous antidepressant by targeting HTR1A in serotonergic neurons.


Asunto(s)
Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , MicroARNs/genética , Receptor de Serotonina 5-HT1A/genética , Animales , Ansiedad/complicaciones , Ansiedad/genética , Ansiedad/patología , Trastorno Depresivo Mayor/complicaciones , Trastorno Depresivo Mayor/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Regulación hacia Arriba/efectos de los fármacos
3.
Parasit Vectors ; 16(1): 407, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936208

RESUMEN

BACKGROUND: Alveolar echinococcosis (AE) is a lethal zoonosis caused by the fox tapeworm Echinococcus multilocularis. The disease is difficult to treat, and an effective therapeutic drug is urgently needed. Echinococcus multilocularis-associated angiogenesis is required by the parasite for growth and metastasis; however, whether antiangiogenic therapy is effective for treating AE is unclear. METHODS: The in vivo efficacy of sunitinib malate (SU11248) was evaluated in mice by secondary infection with E. multilocularis. Enzyme-linked immunosorbent assays (ELISAs) were used to evaluate treatment effects on serum IL-4 and vascular endothelial growth factor A (VEGFA) levels after SU11248 treatment. Gross morphological observations and immunohistochemical staining were used to evaluate the impact of SU11248 on angiogenesis and the expression of pro-angiogenic factors VEGFA and VEGF receptor 2 (VEGFR2) in the metacestode tissues. Furthermore, the anthelmintic effects of SU11248 were tested on E. multilocularis metacestodes in vitro. The effect of SU11248 on the expression of VEGFA, VEGFR2, and phosphorylated VEGFR2 (p-VEGFR2) in liver cells infected with protoscoleces in vitro was detected by western blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA). The influence of SU11248 on endothelial progenitor cell (EPC) proliferation and migration was determined using CCK8 and transwell assays. RESULTS: In vivo, SU11248 treatment markedly reduced neovascular lesion formation and substantially inhibited E. multilocularis metacestode growth in mice. Further, it exhibited high anti-hydatid activity as efficiently as albendazole (ABZ), and the treatment resulted in reduced protoscolex development. In addition, VEGFA, VEGFR2, and p-VEGFR2 expression was significantly decreased in the metacestode tissues after SU11248 treatment. However, no effect of SU11248 on serum IL-4 levels was observed. In vitro, SU11248 exhibited some anthelmintic effects and damaged the cellular structure in the germinal layer of metacestodes at concentrations below those generally considered acceptable for treatment (0.12-0.5 µM). Western blotting, RT-qPCR, and ELISA showed that in co-cultured systems, only p-VEGFR2 levels tended to decrease with increasing SU11248 concentrations. Furthermore, SU11248 was less toxic to Reuber rat hepatoma (RH) cells and metacestodes than to EPCs, and 0.1 µM SU11248 completely inhibited EPC migration to the supernatants of liver cell and protoscolex co-cultures. CONCLUSIONS: SU11248 is a potential candidate drug for the treatment of AE, which predominantly inhibits parasite-induced angiogenesis. Host-targeted anti-angiogenesis treatment strategies constitute a new avenue for the treatment of AE.


Asunto(s)
Antihelmínticos , Echinococcus multilocularis , Ratones , Animales , Sunitinib/farmacología , Factor A de Crecimiento Endotelial Vascular/genética , Interleucina-4 , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico
4.
Cell Biosci ; 10: 45, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211150

RESUMEN

BACKGROUND: Switching microglial polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype represents a novel therapeutic strategy for neuropathic pain (NP). This study aims to investigate whether botulinum toxin type A (BTX-A) regulates microglial M1/M2 polarization by inhibiting P2X7 expression in a rat model of NP. RESULTS: The BTX-A administration elevated pain threshold, induced microglial polarization toward the M2 phenotype, and decreased P2X7 protein level in a rat model of NP induced by chronic compression injury (CCI). Lipopolysaccharide (LPS) was used to activate HAPI rat microglial cells as an in vitro inflammatory model and we demonstrated that BTX-A promoted microglial M2 polarization in LPS-stimulated HAPI microglial cells through suppressing P2X7. CONCLUSIONS: Our results indicate that BTX-A promotes microglial M2 polarization and suppresses CCI-induced NP through inhibiting P2X7 receptor. These findings provide new insights into the mechanism of BTX-A in relieving NP.

5.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(5): 630-636, 2020 May 15.
Artículo en Zh | MEDLINE | ID: mdl-32410432

RESUMEN

OBJECTIVE: To investigate the effect of echinococcus granulosus protoscolices on the differentiation of bone marrow mesenchymal stem cells (BMSCs) into fibroblasts. METHODS: Femur bone marrow of 4-week-old C57BL/6 mice was taken and BMSCs were isolated and cultured by adherent culture. Echinococcus granulosus protoscolices was extracted from the liver of sheep infected with echinococcus granulosus. The experiment was divided into two groups. The experimental group was co-cultured with the 3rd generation BMSCs and the echinococcus granulosus protoscolices, and the control group was the 3rd generation BMSCs. Before and after co-culture, the morphology of BMSCs and the activity of echinococcus granulosus protoscolices were observed by inverted microscope. After cultured for 1, 3, 5, and 7 days, the mRNA expressions of transforming growth factor ß 1 (TGF-ß 1), collagen type Ⅰ, and collagen type Ⅲ were detected by real-time fluorescent quantitative PCR, the protein expressions of TGF-ß 1, collagen type Ⅰ, collagen type Ⅲ, Smad7, and phosphorylated Smad2/3 were detected by Western blot, and the contents of collagen type Ⅰ and collagen type Ⅲ in the supernatant of the two groups were detected by ELISA. RESULTS: After 7 days of co-culture, the morphology of BMSCs changed into fusiform and irregular triangle, which was closer to the mouse fibroblasts. The relative mRNA expressions of TGF-ß 1, collagen type Ⅰ, and collagen type Ⅲ in the experimental group were significantly higher than those in the control group; the relative protein expressions of TGF-ß 1, collagen type Ⅰ, collagen type Ⅲ, and phosphorylated Smad2/3 in the experimental group were significantly higher than those in the control group, and the relative protein expression of Smad7 in the experimental group was significantly lower than that in the control group; the contents of collagen type Ⅰ and collagen type Ⅲ in the supernatant of the experimental group were significantly higher than those in the control group. The differences between the two groups were significant ( P<0.05). CONCLUSION: Echinococcus granulosus protoscolices may promote the secretion of collagen type Ⅰ, collagen type Ⅲ, and TGF-ß 1 by TGF-ß 1/Smad signal pathway, which can promote the fibrosis of BMSCs that related to the formation of fibrocystic wall by echinococcosis.


Asunto(s)
Echinococcus granulosus , Células Madre Mesenquimatosas , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Fibrosis , Ratones , Ratones Endogámicos C57BL , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA