Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Dement Geriatr Cogn Disord ; 52(1): 16-31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36977397

RESUMEN

INTRODUCTION: Lewy body disease (LBD) is the second most common neurodegenerative disorder in patients older than 65 years. LBD is characterized by heterogeneous symptoms like fluctuation in attention, visual hallucinations, Parkinsonism, and REM sleep behaviour disorders. Considering the relevant social impact of the disease, identifying effective non-pharmacological treatments is becoming a priority. The aim of this systematic review was to provide an up-to-date literature review of the most effective non-pharmacological treatments in patients with LBD, focussing on evidence-based interventions. METHODS: Following PRISMA criteria, we carried out a systematic search through three databases (PubMed, Cochrane Libraries, and PEDro) including physical therapy (PT), cognitive rehabilitation (CR), light therapy (LT), transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), electroconvulsive therapy (ECT), deep brain stimulation (DBS). All studies were qualitatively assessed using standardized tools (CARE and EPHPP). RESULTS: We obtained a total of 1,220 studies of which 23 original articles met eligibility criteria for inclusion. The total number of LBD patients included was 231; mean age was 69.98, predominantly men (68%). Some PT studies highlighted improvements in motor deficits. CR produced significant improvements in mood, cognition, and patient's quality of life and satisfaction. LT outlined a partial trend of improvements in mood and sleep quality. DBS, ECT, and TMS showed some partial improvements mainly on neuropsychiatric symptoms, whereas tDCS provided partial improvements in attention. CONCLUSION: This review highlights the efficacy of some evidence-based rehabilitation studies in LBD; however, further randomized controlled trials with larger samples are needed to provide definitive recommendations.


Asunto(s)
Terapia Electroconvulsiva , Enfermedad por Cuerpos de Lewy , Estimulación Transcraneal de Corriente Directa , Masculino , Humanos , Anciano , Femenino , Enfermedad por Cuerpos de Lewy/diagnóstico , Calidad de Vida , Atención/fisiología
2.
Plant Cell Environ ; 44(4): 1119-1129, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32515010

RESUMEN

Anthocyanins have long been suggested as having great potential in offering photoprotection to plants facing high light irradiance. Nonetheless, their effective ability in protecting the photosynthetic apparatus from supernumerary photons has been questioned by some authors, based upon the inexact belief that anthocyanins almost exclusively absorb green photons, which are poorly absorbed by chlorophylls. Here we focus on the blue light absorbing features of anthocyanins, a neglected issue in anthocyanin research. Anthocyanins effectively absorb blue photons: the absorbance of blue relative to green photons increases from tri- to mono-hydroxy B-ring substituted structures, reaching up to 50% of green photons absorption. We offer a comprehensive picture of the molecular events activated by low blue-light availability, extending our previous analysis in purple and green basil, which we suggest to be responsible for the "shade syndrome" displayed by cyanic leaves. While purple leaves display overexpression of genes promoting chlorophyll biosynthesis and light harvesting, in green leaves it is the genes involved in the stability/repair of photosystems that are largely overexpressed. As a corollary, this adds further support to the view of an effective photoprotective role of anthocyanins. We discuss the profound morpho-anatomical adjustments imposed by the epidermal anthocyanin shield, which reflect adjustments in light harvesting capacity under imposed shade and make complex the analysis of the photosynthetic performance of cyanic versus acyanic leaves.


Asunto(s)
Antocianinas/fisiología , Hojas de la Planta/fisiología , Antocianinas/metabolismo , Clorofila/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación
3.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361067

RESUMEN

Carotenoids and phenylpropanoids play a dual role of limiting and countering photooxidative stress. We hypothesize that their "antioxidant" function is prominent in plants exposed to summer drought, when climatic conditions exacerbate the light stress. To test this, we conducted a field study on Phillyrea latifolia, a Mediterranean evergreen shrub, carrying out daily physiological and biochemical analyses in spring and summer. We also investigated the functional role of the major phenylpropanoids in different leaf tissues. Summer leaves underwent the most severe drought stress concomitantly with a reduction in radiation use efficiency upon being exposed to intense photooxidative stress, particularly during the central hours of the day. In parallel, a significant daily variation in both carotenoids and phenylpropanoids was observed. Our data suggest that the morning-to-midday increase in zeaxanthin derived from the hydroxylation of ß-carotene to sustain non-photochemical quenching and limit lipid peroxidation in thylakoid membranes. We observed substantial spring-to-summer and morning-to-midday increases in quercetin and luteolin derivatives, mostly in the leaf mesophyll. These findings highlight their importance as antioxidants, countering the drought-induced photooxidative stress. We concluded that seasonal and daily changes in photosynthetic and non-photosynthetic pigments may allow P. latifolia leaves to avoid irreversible photodamage and to cope successfully with the Mediterranean harsh climate.


Asunto(s)
Antioxidantes/farmacología , Oleaceae/efectos de los fármacos , Fenilpropionatos/farmacología , Hojas de la Planta/efectos de los fármacos , Protectores contra Radiación/farmacología , Estaciones del Año , Estrés Fisiológico , Carotenoides/farmacología , Sequías , Luz , Peroxidación de Lípido , Oleaceae/crecimiento & desarrollo , Oleaceae/efectos de la radiación , Estrés Oxidativo , Fotosíntesis , Pigmentación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación
4.
Planta ; 251(2): 48, 2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932951

RESUMEN

MAIN CONCLUSION: Salinity alters VOC profile in emitter sweet basil plants. Airborne signals by emitter plants promote earlier flowering of receivers and increase their reproductive success under salinity. Airborne signals can prime neighboring plants against pathogen and/or herbivore attacks, whilst little is known about the possibility that volatile organic compounds (VOCs) emitted by stressed plants alert neighboring plants against abiotic stressors. Salt stress (50 mM NaCl) was imposed on Ocimum basilicum L. plants (emitters, namely NaCl), and a putative alerting-priming interaction was tested on neighboring basil plants (receivers, namely NaCl-S). Compared with the receivers, the NaCl plants exhibited reduced biomass, lower photosynthesis, and changes in the VOC profile, which are common early responses of plants to salinity. In contrast, NaCl-S plants had physiological parameters similar to those of nonsalted plants (C), but exhibited a different VOC fingerprint, which overlapped, for most compounds, with that of emitters. NaCl-S plants exposed later to NaCl treatment (namely NaCl-S + NaCl) exhibited changes in the VOC profile, earlier plant senescence, earlier flowering, and higher seed yield than C + NaCl plants. This experiment offers the evidence that (1) NaCl-triggered VOCs promote metabolic changes in NaCl-S plants, which, finally, increase reproductive success and (2) the differences in VOC profiles observed between emitters and receivers subjected to salinity raise the question whether the receivers are able to "propagate" the warning signal triggered by VOCs in neighboring companions.


Asunto(s)
Ocimum basilicum/fisiología , Reproducción/efectos de los fármacos , Salinidad , Estrés Salino/efectos de los fármacos , Compuestos Orgánicos Volátiles/farmacología , Biomasa , Carbono/metabolismo , Clorofila/metabolismo , Etilenos/biosíntesis , Flavonoides/metabolismo , Fluorescencia , Gases/metabolismo , Metabolómica , Nitrógeno/metabolismo , Ocimum basilicum/efectos de los fármacos , Fenotipo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Análisis de Componente Principal
5.
Molecules ; 24(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067628

RESUMEN

Ancient apple cultivars usually have higher nutraceutical value than commercial ones, but in most cases their variability in pomological traits does not allow us to discriminate among them. Fruit of two Tuscany ancient apple cultivars, 'Casciana' and 'Rotella', picked from eight different orchards (four for each cultivar) were analyzed for their pomological traits, organoleptic qualities, polyphenolic profile and antiradical activity. The effectiveness of a polyphenol-based cluster analysis was compared to molecular markers (internal transcribed spacers, ITS1 and ITS2) to unequivocally discern the two apples. 'Casciana' and 'Rotella' fruit had a higher nutraceutical value than some commercial cultivars, in terms of phenolic abundance, profile and total antiradical activity. Although pedo-climatic conditions of different orchards influenced the phenolic profile of both apples, the polyphenolic discriminant analysis clearly separated the two cultivars, principally due to higher amounts of procyanidin B2, procyanidin B3 and p-coumaroylquinic acid in 'Casciana' than in 'Rotella' fruit. These three polyphenols can be used proficiently as biochemical markers for distinguishing the two apples when pomological traits cannot. Conversely, ITS1 and ITS2 polymorphism did not allow us to distinguish 'Casciana' from 'Rotella' fruit. Overall, the use of polyphenolic fingerprint might represent a valid tool to ensure the traceability of products with a high economic value.


Asunto(s)
Biomarcadores , Frutas/genética , Malus/genética , Polifenoles/genética , Biflavonoides/química , Biflavonoides/genética , Catequina/química , Catequina/genética , Flavonoides/química , Flavonoides/genética , Frutas/química , Italia , Malus/química , Malus/clasificación , Extractos Vegetales/química , Polifenoles/química , Proantocianidinas/química , Proantocianidinas/genética
6.
BMC Genomics ; 19(1): 872, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514212

RESUMEN

BACKGROUND: Similar to other urban trees, holm oaks (Quercus ilex L.) provide a physiological, ecological and social service in the urban environment, since they remove atmospheric pollution. However, the urban environment has several abiotic factors that negatively influence plant life, which are further exacerbated due to climate change, especially in the Mediterranean area. Among these abiotic factors, increased uptake of Na + and Cl - usually occurs in trees in the urban ecosystem; moreover, an excess of the tropospheric ozone concentration in Mediterranean cities further affects plant growth and survival. Here, we produced and annotated a de novo leaf transcriptome of Q. ilex as well as transcripts over- or under-expressed after a single episode of O3 (80 nl l-1, 5 h), a salt treatment (150 mM for 15 days) or a combination of these treatments, mimicking a situation that plants commonly face, especially in urban environments. RESULTS: Salinity dramatically changed the profile of expressed transcripts, while the short O3 pulse had less effect on the transcript profile. However, the short O3 pulse had a very strong effect in inducing over- or under-expression of some genes in plants coping with soil salinity. Many differentially regulated genes were related to stress sensing and signalling, cell wall remodelling, ROS sensing and scavenging, photosynthesis and to sugar and lipid metabolism. Most differentially expressed transcripts revealed here are in accordance with a previous report on Q. ilex at the physiological and biochemical levels, even though the expression profiles were overall more striking than those found at the biochemical and physiological levels. CONCLUSIONS: We produced for the first time a reference transcriptome for Q. ilex, and performed gene expression analysis for this species when subjected to salt, ozone and a combination of the two. The comparison of gene expression between the combined salt + ozone treatment and salt or ozone alone showed that even though many differentially expressed genes overlap all treatments, combined stress triggered a unique response in terms of gene expression modification. The obtained results represent a useful tool for studies aiming to investigate the effects of environmental stresses in urban-adapted tree species.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ozono/farmacología , Quercus/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Quercus/efectos de los fármacos , Quercus/metabolismo , ARN de Planta/química , ARN de Planta/aislamiento & purificación , ARN de Planta/metabolismo , Análisis de Secuencia de ARN
7.
Molecules ; 23(9)2018 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-30205584

RESUMEN

The Mediterranean basin is a biodiversity hotspot of wild edible species, and their therapeutic and culinary uses have long been documented. Owing to the growing demand for wild edible species, there are increasing concerns about the safety, standardization, quality, and availability of products derived from these species collected in the wild. An efficient cultivation method for the species having promising nutraceutical values is highly desirable. In this backdrop, a hydroponic system could be considered as a reproducible and efficient agronomic practice to maximize yield, and also to selectively stimulate the biosynthesis of targeted metabolites. The aim of this report is to review the phytochemical and toxic compounds of some potentially interesting Mediterranean wild edible species. Herein, after a deep analysis of the literature, information on the main bioactive compounds, and some possibly toxic molecules, from fifteen wild edible species have been compiled. The traditional recipes prepared with these species are also listed. In addition, preliminary data about the performance of some selected species are also reported. In particular, germination tests performed on six selected species revealed that there are differences among the species, but not with crop species. "Domestication" of wild species seems a promising approach for exploiting these "new functional foods".


Asunto(s)
Productos Agrícolas/normas , Fitoquímicos/farmacología , Plantas Comestibles/química , Biodiversidad , Productos Agrícolas/química , Dieta Mediterránea , Humanos , Fitoquímicos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Malezas/efectos adversos , Malezas/química , Plantas Comestibles/efectos adversos
8.
Photosynth Res ; 132(1): 13-66, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27815801

RESUMEN

Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122:121-158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additional Chl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F V /F M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge from different Chl a fluorescence analysis domains, yielding in several cases new insights.


Asunto(s)
Clorofila/química , Clorofila/metabolismo , Fluorescencia , Técnicas Biosensibles , Clorofila A , Productos Agrícolas , Complejo de Citocromo b6f/metabolismo , Citocromos b6/metabolismo , Transporte de Electrón , Herbicidas/toxicidad , Luz , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Estrés Fisiológico , Temperatura , Árboles
9.
J Exp Bot ; 68(9): 2425-2437, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28419325

RESUMEN

Photosynthetic performance and the expression of genes involved in light signaling and the biosynthesis of isoprenoids and phenylpropanoids were analysed in green ('Tigullio', TIG) and red ('Red Rubin', RR) basil. The aim was to detect the physiological and molecular response mechanisms to high sunlight. The attenuation of blue-green light by epidermal anthocyanins was shown to evoke shade-avoidance responses with consequential effects on leaf morpho-anatomical traits and gas exchange performance. Red basil had a lower mesophyll conductance, partially compensated by the less effective control of stomatal movements, in comparison with TIG. Photosynthesis decreased more in TIG than in RR in high sunlight, because of larger stomatal limitations and the transient impairment of PSII photochemistry. The methylerythritol 4-phosphate pathway promoted above all the synthesis and de-epoxidation of violaxanthin-cycle pigments in TIG and of neoxanthin and lutein in RR. This enabled the green leaves to process the excess radiant energy effectively, and the red leaves to optimize light harvesting and photoprotection. The greater stomatal closure observed in TIG than in RR was due to enhanced abscisic acid (ABA) glucose ester deglucosylation and reduced ABA oxidation, rather than to superior de novo ABA synthesis. This study shows a strong competition between anthocyanin and flavonol biosynthesis, which occurs at the level of genes regulating the oxidation of the C2-C3 bond in the dihydro-flavonoid skeleton.


Asunto(s)
Dióxido de Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Ocimum basilicum/fisiología , Fotosíntesis , Hojas de la Planta/química , Luz Solar , Metaboloma , Ocimum basilicum/genética , Transcriptoma
11.
Physiol Plant ; 157(1): 69-84, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26541269

RESUMEN

Despite the huge biodiversity characterizing the Mediterranean environment, environmental constraints, such as high sunlight and high temperatures alongside with dry periods, make plant survival hard. In addition, high irradiance leads to increasing ozone (O3 ) concentrations in ambient air. In this era of global warming, it is necessary to understand the mechanisms that allow native species to tolerate these environmental constraints and how such mechanisms interact. Three Mediterranean oak species (Quercus ilex, Quercus pubescens and Quercus cerris) with different features (drought tolerant, evergreen or deciduous species) were selected to assess their biometrical, physiological and biochemical responses under drought and/or O3 stress (80-100 nl l(-1) of O3 for 5 h day(-1) for 77 consecutive days). Leaf visible injury appeared only under drought stress (alone or combined with O3 ) in all three species. Drought × O3 induced strong reductions in leaf dry weight in Q. pubescens and Q. cerris (-70 and -75%, respectively). Alterations in physiological (i.e. decrease in maximum carboxylation rate) and biochemical parameters (i.e. increase in proline content and build-up of malondialdehyde by-products) occurred in all the three species, although drought represented the major determinant. Quercus ilex and Q. pubescens, which co-occur in dry environments, were more tolerant to drought and drought × O3 . Quercus ilex was the species in which oxidative stress occurred only when drought was applied with O3 . High plasticity at a biochemical level (i.e. proline content) and evergreen habitus are likely on the basis of the higher tolerance of Q. ilex.


Asunto(s)
Aclimatación , Ozono/efectos adversos , Quercus/fisiología , Sequías , Ambiente , Calentamiento Global , Calor , Malondialdehído/metabolismo , Estrés Oxidativo , Hojas de la Planta/fisiología , Especificidad de la Especie
12.
New Phytol ; 207(3): 613-26, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25784134

RESUMEN

The hypothesis was tested that isoprenoids and phenylpropanoids play a prominent role in countering photooxidative stress, following the depletion of antioxidant enzyme activity in plants exposed to severe drought stress under high solar irradiance and high temperatures. Platanus × acerifolia, a high isoprene-emitting species, was drought-stressed during summer (WS) and compared with unstressed controls (WW). Water relations and photosynthetic parameters were measured under mild, moderate, and severe drought stress conditions. Volatile and nonvolatile isoprenoids, antioxidant enzymes, and phenylpropanoids were measured with the same time course, but in four different periods of the day. Drought severely inhibited photosynthesis, whereas it did not markedly affect the photochemical machinery. Isoprene emission and zeaxanthin concentration were higher in WS than in WW leaves, particularly at mild and moderate stresses, and during the hottest hours of the day. The activities of catalase and ascorbate peroxidase steeply declined during the day, while the activity of guaiacol peroxidase and the concentration of quercetin increased during the day, peaking in the hottest hours in both WW and WS plants. Our experiment reveals a sequence of antioxidants that were used daily by plants to orchestrate defense against oxidative stress induced by drought and associated high light and high temperature. Secondary metabolites seem valuable complements of antioxidant enzymes to counter oxidative stress during the hottest daily hours.


Asunto(s)
Antioxidantes/metabolismo , Sequías , Propanoles/metabolismo , Proteaceae/fisiología , Estaciones del Año , Estrés Fisiológico , Terpenos/metabolismo , Ácido Ascórbico/metabolismo , Dióxido de Carbono/metabolismo , Ritmo Circadiano , Gases/metabolismo , Modelos Lineales , Malondialdehído/metabolismo , Región Mediterránea , Estrés Oxidativo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Estomas de Plantas/fisiología , Análisis de Componente Principal , Proteaceae/enzimología , Quercetina/metabolismo , Volatilización , Agua/química
13.
Planta ; 240(5): 941-53, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24903358

RESUMEN

Boron (B) toxicity is an important agricultural problem in arid environments. Excess edaphic B compromises photosynthetic efficiency, limits growth and reduces crop yield. However, some purple-leafed cultivars of sweet basil (Ocimum basilicum) exhibit greater tolerance to high B concentrations than do green-leafed cultivars. We hypothesised that foliar anthocyanins protect basil leaf mesophyll from photo-oxidative stress when chloroplast function is compromised by B toxicity. Purple-leafed 'Red Rubin' and green-leafed 'Tigullio' cultivars, grown with high or negligible edaphic B, were given a photoinhibitory light treatment. Possible effects of photoabatement by anthocyanins were simulated by superimposing a purple polycarbonate filter on the green leaves. An ameliorative effect of light filtering on photosynthetic quantum yield and on photo-oxidative load was observed in B-stressed plants. In addition, when green protoplasts from both cultivars were treated with B and illuminated through a screen of anthocyanic protoplasts or a polycarbonate film which approximated cyanidin-3-O-glucoside optical properties, the degree of photoinhibition, hydrogen peroxide production, and malondialdehyde content were reduced. The data provide evidence that anthocyanins exert a photoprotective role in purple-leafed basil mesophyll cells, thereby contributing to improved tolerance to high B concentrations.


Asunto(s)
Antocianinas/metabolismo , Boro/metabolismo , Ocimum basilicum/metabolismo , Hojas de la Planta/metabolismo , Boro/toxicidad , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Luz , Malondialdehído/metabolismo , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/metabolismo , Células del Mesófilo/efectos de la radiación , Microscopía Confocal , Ocimum basilicum/fisiología , Ocimum basilicum/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Fotosíntesis/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Protoplastos/efectos de la radiación , Espectrofotometría
14.
Photosynth Res ; 122(2): 121-58, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25119687

RESUMEN

The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.


Asunto(s)
Clorofila/química , Fluorescencia , Fotosíntesis/fisiología , Clorofila/metabolismo , Clorofila A , Luz
15.
Ann Bot ; 114(3): 525-38, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25006177

RESUMEN

BACKGROUND AND AIMS: A major challenge in plant ecophysiology is understanding the effects of multiple sub-optimal environmental conditions on plant performance. In most Mediterranean areas soil salinity builds up during the summer because of low availability of soil water coupled with hot temperatures. Although sunlight and soil salinity may strongly interact in determining a plant's performance, this has received relatively little attention. METHODS: Two-year-old seedlings of Fraxinus ornus were grown outdoors in pots during a Mediterranean summer in either 45 % (shaded plants) or 100 % (sun plants) sunlight irradiance and were supplied with either deionized water or deionized water plus 75 mm NaCl. Morpho-anatomical traits, water and ionic relations, gas exchange and photosystem II performance, concentrations of individual carotenoids, activity of antioxidant enzymes, concentrations of ascorbic acid and individual polyphenols were measured in leaves. Leaf oxidative stress and damage were estimated by in vivo analysis of stable free radicals and ultrastructural analyses. KEY RESULTS: Leaf concentrations of potentially toxic ions did not markedly differ in shaded or sun plants in response to salinity. Leaves of sun plants displayed superior water use efficiency compared with leaves of shaded plants, irrespective of salinity treatment, and had both better stomatal control and higher CO2 carboxylation efficiency than leaves of shaded plants. In the salt-treated groups, the adverse effects of excess midday irradiance were greater in shade than in sun plants. The activity of enzymes responsible for detoxifying hydrogen peroxide decreased in shaded plants and increased in sun plants as a result of salinity stress. In contrast, the activity of guaiacol peroxidase and the concentration of phenylpropanoids increased steeply in response to salinity in shaded plants but were unaffected in sun plants. CONCLUSIONS: It is concluded that salinity may constrain the performance of plants growing under partial shading more severely than that of plants growing under full sun during summer. The results suggest co-ordination within the antioxidant defence network aimed at detoxifying salt-induced generation of reactive oxygen species.


Asunto(s)
Antioxidantes/metabolismo , Fraxinus/metabolismo , Fotosíntesis/efectos de los fármacos , Cloruro de Sodio/farmacología , Luz Solar , Fraxinus/anatomía & histología , Fraxinus/efectos de los fármacos , Hojas de la Planta/fisiología , Transpiración de Plantas/efectos de los fármacos , Plantones/anatomía & histología , Plantones/efectos de los fármacos , Plantones/metabolismo
16.
Physiol Plant ; 152(3): 585-98, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24684471

RESUMEN

The putative photoprotective role of foliar anthocyanins continues to attract heated debate. Strikingly different experimental set-ups coupled with a poor knowledge of anthocyanin identity have likely contributed to such disparate opinions. Here, the photosynthetic responses to 30 or 100% solar irradiance were compared in two cultivars of basil, the green-leafed Tigullio (TG) and the purple-leafed Red Rubin (RR). Coumaroyl anthocyanins in RR leaf epidermis significantly mitigated the effects of high light stress. In full sunlight, RR leaves displayed several shade-plant traits; they transferred less energy than did TG to photosystem II (PSII), and non-photochemical quenching was lower. The higher xanthophyll cycle activity in TG was insufficient to prevent inactivation of PSII in full sunlight. However, TG was the more efficient in the shade; RR was far less able to accommodate a large change in irradiance. Investment of carbon to phenylpropanoid biosynthesis was more in RR than in TG in the shade, and was either greatly enhanced in TG or varied little in RR because of high sunlight. The metabolic cost of photoprotection was lower whereas light-induced increase in biomass production was higher in RR than in TG, thus making purple basil the more light tolerant. Purple basil appears indeed to display the conservative resource-use strategy usually observed in highly stress tolerant species. We conclude that the presence of epidermal coumaroyl anthocyanins confers protective benefits under high light, but it is associated with a reduced plasticity to accommodate changing light fluxes as compared with green leaves.


Asunto(s)
Antocianinas/metabolismo , Carotenoides/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Propanoles/metabolismo , Ocimum basilicum/fisiología , Ocimum basilicum/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Luz Solar , Xantófilas/metabolismo
17.
Beilstein J Org Chem ; 10: 1495-503, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25161706

RESUMEN

Pyrene derivatives can be incorporated into nucleic acid analogs in order to obtain switchable probes or supramolecular architectures. In this paper, peptide nucleic acids (PNAs) containing 1 to 3 1-pyreneacetic acid units (PNA1-6) with a sequence with prevalence of pyrimidine bases, complementary to cystic fibrosis W1282X point mutation were synthesized. These compounds showed sequence-selective switch-on of pyrene excimer emission in the presence of target DNA, due to PNA2DNA triplex formation, with stability depending on the number and positioning of the pyrene units along the chain. An increase in triplex stability and a very high mismatch-selectivity, derived from combined stacking and base-pairing interactions, were found for PNA2, bearing two distant pyrene units.

18.
Funct Plant Biol ; 512024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38442921

RESUMEN

Orchids (Phalaenopsis spp.) growing in tropical and subtropical regions are epiphytes. As such, they grow on trees with the root system utilised to anchor themselves to tree branches. These roots are highly specialised, display a large diameter and are often green, suggesting the ability to carry out photosynthesis. However, the role of photosynthesis in orchid roots is controversial. Orchids that are leafless can photosynthesise in their roots, thus indicating that some orchid roots carry out photosynthesis in a similar manner to leaves. However, the primary site of photosynthesis in orchids are in their leaves, and the roots of epiphytic orchids may mostly conduct internal refixation of respiratory CO2 . Besides contributing to the overall carbon metabolism of orchid plants, oxygen produced through root photosynthesis may also be important by alleviating potential root hypoxia. The bulky tissue of most epiphytic orchid roots suggests that oxygen diffusion in these roots can be limited. Here, we demonstrate that the bulky roots of a widely commercially cultivated orchid belonging to the genus Phalaenopsis are hypoxic in the dark. These roots are photosynthetically active and produce oxygen when exposed to light, thus mitigating root hypoxia.


Asunto(s)
Orchidaceae , Fotosíntesis , Árboles , Hipoxia , Oxígeno
19.
J Plant Res ; 126(6): 775-86, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23779070

RESUMEN

This study aimed to evaluate the behavior of zucchini (Cucurbita pepo L.) and cucumber (Cucumis sativus L.) under boron (B) excess. Plants were grown under greenhouse conditions in a sandy soil-peat mixture using a nutrient solution containing 0.2 (control), 10 and 20 mg L(-1) B. Visible symptoms were quantified and leaf B accumulation, gas exchanges, chlorophyll (Chl) a fluorescence, malondialdehyde by-products and antioxidants were investigated 20 days after the beginning of the treatments. Boron toxicity induced oxidative load and leaf necrotic burns coupled with the reduction of leaf growth and biomass accumulation in both species. Boron excess resulted in a decrease of Chl a/b ratio, potential (Fv/Fm) and actual (ΦPSII) PSII quantum efficiency, photosynthetic rate (Pn), stomatal conductance (gs), and transpiration (E) as well. A general stimulation of the antioxidant enzymes ascorbate peroxidase, catalase and superoxide dismutase was observed, and a significant increase in the oxidized form of ascorbate and glutathione was evidenced for treated plants of both species. A difference between the two species was observed: C. pepo appeared to be more sensitive to B stress being damaged at all B concentration. C. sativus grown at 10 mg L(-1) B in nutrient solution showed some down-regulated mechanisms, i.e. increase in Chl b content and a good photochemical PSII efficiency as well as a higher amount of constitutive antioxidant molecules, that, however, are not sufficient to contrast the negative effects of B.


Asunto(s)
Antioxidantes/metabolismo , Boro/toxicidad , Cucumis sativus/efectos de los fármacos , Cucurbita/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Transpiración de Plantas/efectos de los fármacos , Biomasa , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/fisiología , Cucurbita/crecimiento & desarrollo , Cucurbita/fisiología , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/fisiología
20.
J Sci Food Agric ; 93(8): 1814-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23184255

RESUMEN

BACKGROUND: Polyphenol oxidase (PPO) and, to a minor extent, peroxidase (POD) represent the key enzymes involved in enzymatic browning, a negative process induced by cutting fresh-cut produce such as lettuce (Lactuca sativa) and rocket salad (Eruca sativa). Although ascorbic acid is frequently utilised as an anti-browning agent, its mechanism in the prevention of the browning phenomenon is not clearly understood. RESULTS: The activity of PPO and POD and their isoforms in lettuce (a high-browning and low-ascorbic acid species) and rocket salad (a low-browning and high-ascorbic species) was characterised. The kinetic parameters of PPO and in vitro ascorbic acid-PPO inhibition were also investigated. In rocket salad, PPO activity was much lower than that in lettuce and cutting induced an increase in PPO activity only in lettuce. Exogenous ascorbic acid (5 mmol L(-1)) reduced PPO activity by about 90% in lettuce. POD did not appear to be closely related to browning in lettuce. CONCLUSION: PPO is the main enzyme involved in the browning phenomenon; POD appears to play a minor role. The concentration of endogenous ascorbic acid in rocket salad was related to its low-browning sensitivity after cutting. In lettuce, the addition of ascorbic acid directly inhibited PPO activity. The results suggest that the high ascorbic acid content found in rocket salad plays an effective role in reducing PPO activity.


Asunto(s)
Ácido Ascórbico/farmacología , Brassicaceae , Catecol Oxidasa/antagonistas & inhibidores , Catecol Oxidasa/metabolismo , Almacenamiento de Alimentos , Lactuca , Conservación de Alimentos/métodos , Peroxidasa/antagonistas & inhibidores , Peroxidasa/metabolismo , Isoformas de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA