RESUMEN
Emerging evidence shows the crucial role of inflammation (particularly NF-κB pathway) in the development and progression of myelofibrosis (MF), becoming a promising therapeutic target. Furthermore, tailoring treatment with currently available JAK inhibitors (such as ruxolitinib or fedratinib) does not modify the natural history of the disease and has important limitations, including cytopenias. Since recent studies have highlighted the role of miR-146a, a negative regulator of the NF-κB pathway, in the pathogenesis of MF; here we used miR-146a-/- (KO) mice, a MF-like model lacking driver mutations, to investigate whether pharmacological inhibition of JAK/STAT and/or NF-κB pathways may reverse the myelofibrotic phenotype of these mice. Specifically, we tested the JAK1/2 inhibitor, ruxolitinib; the NF-κB inhibitor via IKKα/ß, BMS-345541; both inhibitors in combination; or a dual inhibitor of both pathways (JAK2/IRAK1), pacritinib. Although all treatments decreased spleen size and partially recovered its architecture, only NF-κB inhibition, either using BMS-345541 (alone or in combination) or pacritinib, resulted in a reduction of extramedullary hematopoiesis, bone marrow (BM) fibrosis and osteosclerosis, along with an attenuation of the exacerbated inflammatory state (via IL-1ß and TNFα). However, although dual inhibitor improved anemia and reversed thrombocytopenia, the combined therapy worsened anemia by inducing BM hypoplasia. Both therapeutic options reduced NF-κB and JAK/STAT signaling in a context of JAK2V617F-driven clonal hematopoiesis. Additionally, combined treatment reduced both COL1A1 and IL-6 production in an in vitro model mimicking JAK2-driven fibrosis. In conclusion, NF-κB inhibition reduces, in vitro and in vivo, disease burden and BM fibrosis, which could provide benefits in myelofibrosis patients.
Asunto(s)
Ratones Noqueados , MicroARNs , FN-kappa B , Nitrilos , Mielofibrosis Primaria , Pirazoles , Pirimidinas , Animales , Mielofibrosis Primaria/tratamiento farmacológico , Mielofibrosis Primaria/genética , MicroARNs/genética , Ratones , FN-kappa B/metabolismo , Nitrilos/uso terapéutico , Nitrilos/farmacología , Pirimidinas/uso terapéutico , Pirimidinas/farmacología , Pirazoles/uso terapéutico , Pirazoles/farmacología , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Hematopoyesis Extramedular/efectos de los fármacosRESUMEN
Studies on older patients have established notable conceptual changes in the etiopathogenesis of acute coronary syndrome (ACS), but little is known about this disease in young patients (<45 years). Of special interest is thromboinflammation, key at onset, evolution and therapy of cardiovascular pathology. Therefore, we explored whether ACS at an early age is a thromboinflammatory disease by analyzing NETs and rs2431697 of miR-146a (a miRNA considered as a brake of TLR/NF-kB pathway), elements previously related to higher rates of recurrence in atrial fibrillation and sepsis. We included 359 ACS patients (<45 years) and classified them for specific analysis into G1 (collected during the hospitalization of the first event), G2 and G3 (retrospectively collected from patients with or without ACS recurrence, respectively). cfDNA and citH3−DNA were quantified, and rs2431697 was genotyped. Analysis in the overall cohort showed a moderate but significant correlation between cfDNA and citH3−DNA and Killip−Kimball score. In addition, patients with citH3−DNA > Q4 more frequently had a history of previous stroke (6.1% vs. 1.6%). In turn, rs2431697 did not confer increased risk for the onset of ACS, but T carriers had significantly higher levels of NET markers. By groups, we found that cfDNA levels were similarly higher in all patients, but citH3−DNA was especially higher in G1, suggesting that in plasma, this marker may be attenuated over time. Finally, patients from G2 with the worst markers (cfDNA and citH3−DNA > Q2 and T allele) had a two-fold increased risk of a new ischemic event at 2-year follow-up. In conclusion, our data confirm that ACS is younger onset with thromboinflammatory disease. In addition, these data consolidate rs2431697 as a silent proinflammatory factor predisposing to NETosis, and to a higher rate of adverse events in different cardiovascular diseases.