Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(7): 1217-1241, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35675825

RESUMEN

GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F0 models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function.


Asunto(s)
Trastornos del Neurodesarrollo , Receptores AMPA , Estudios de Cohortes , Heterocigoto , Humanos , Mutación Missense , Trastornos del Neurodesarrollo/genética , Receptores AMPA/genética
2.
Dev Dyn ; 252(3): 429-438, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36217575

RESUMEN

BACKGROUND: Xenopus frogs are used extensively for modeling genetic diseases owing to characteristics such as the abundance of eggs combined with their large size, allowing easy manipulation, and rapid external embryo development enabling the examination of cellular and phenotypic alterations throughout embryogenesis. However, genotyping of mutant animals is currently done either as part of a large group, requiring many embryos, or late in development with welfare effects. Therefore, we adapted the Zebrafish Embryonic Genotyper for rapid genomic DNA extraction from Xenopus tropicalis and Xenopus laevis at early stages. RESULTS: Sufficient and good quality DNA was extracted as early as the Nieuwkoop and Faber stage 19 and, importantly, no detrimental effects of the extraction process on the subsequent tadpole development, behavior, or morphology were observed. Amplicons of up to 800 bp were successfully amplified and used for further analyses such as gel electrophoresis, T7 endonuclease I assay and Sanger sequencing. CONCLUSION: This method allows rapid genotyping during the early stages of Xenopus development, which enables safe identification of mutants. These can be analyzed at early developmental stages or selected for raising without the need for invasive genotyping later, with resource savings and ethical gains in line with the 3Rs principles.


Asunto(s)
Proteínas de Xenopus , Pez Cebra , Animales , Xenopus , Xenopus laevis , Genotipo , Proteínas de Xenopus/genética , Embrión no Mamífero
3.
Dev Biol ; 483: 66-75, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34968443

RESUMEN

In recent years CRISPR-Cas9 knockouts (KO) have become increasingly ultilised to study gene function. MicroRNAs (miRNAs) are short non-coding RNAs, 20-22 nucleotides long, which affect gene expression through post-transcriptional repression. We previously identified miRNAs-196a and -219 as implicated in the development of Xenopus neural crest (NC). The NC is a multipotent stem-cell population, specified during early neurulation. Following EMT, NC cells migrate to various points in the developing embryo where they give rise to a number of tissues including parts of the peripheral nervous system, pigment cells and craniofacial skeleton. Dysregulation of NC development results in many diseases grouped under the term neurocristopathies. As miRNAs are so small, it is difficult to design CRISPR sgRNAs that reproducibly lead to a KO. We have therefore designed a novel approach using two guide RNAs to effectively 'drop out' a miRNA. We have knocked out miR-196a and miR-219 and compared the results to morpholino knockdowns (KD) of the same miRNAs. Validation of efficient CRISPR miRNA KO and phenotype analysis included use of whole-mount in situ hybridization of key NC and neural plate border markers such as Pax3, Xhe2, Sox10 and Snail2, q-RT-PCR and Sanger sequencing. To show specificity we have also rescued the knockout phenotype using miRNA mimics. MiRNA-219 and miR-196a KO's both show loss of NC, altered neural plate and hatching gland phenotypes. Tadpoles show gross craniofacial and pigment phenotypes.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , MicroARNs/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Hibridación in Situ/métodos , Morfolinos/genética , Cresta Neural/embriología , Cresta Neural/metabolismo , Placa Neural/embriología , Placa Neural/metabolismo , Neurulación/genética , Fenotipo , ARN Guía de Kinetoplastida/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
4.
Am J Hum Genet ; 106(3): 338-355, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109419

RESUMEN

The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Mutación , Trastornos del Neurodesarrollo/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína de Unión al GTP rac1/metabolismo , Secuencia de Aminoácidos , Estudios de Cohortes , Femenino , Factores de Intercambio de Guanina Nucleótido/química , Células HEK293 , Humanos , Masculino , Fenotipo , Proteínas Serina-Treonina Quinasas/química , Homología de Secuencia de Aminoácido
5.
Biol Conserv ; 184: 380-388, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25843959

RESUMEN

The chytrid fungus Batrachochytrium dendrobatidis (Bd) is notorious amongst current conservation biology challenges, responsible for mass mortality and extinction of amphibian species. World trade in amphibians is implicated in global dissemination. Exports of South African Xenopus laevis have led to establishment of this invasive species on four continents. Bd naturally infects this host in Africa and now occurs in several introduced populations. However, no previous studies have investigated transfer of infection into co-occurring native amphibian faunas. A survey of 27 U.K. institutions maintaining X. laevis for research showed that most laboratories have low-level infection, a risk for native species if animals are released into the wild. RT-PCR assays showed Bd in two introduced U.K. populations of X. laevis, in Wales and Lincolnshire. Laboratory and field studies demonstrated that infection levels increase with stress, especially low temperature. In the U.K., native amphibians may be exposed to intense transmission in spring when they enter ponds to spawn alongside X. laevis that have cold-elevated Bd infections. Exposure to cross-infection has probably been recurrent since the introduction of X. laevis, >20 years in Lincolnshire and 50 years in Wales. These sites provide an important test for assessing the impact of X. laevis on Bd spread. However, RT-PCR assays on 174 native amphibians (Bufo, Rana, Lissotriton and Triturus spp.), sympatric with the Bd-infected introduced populations, showed no foci of self-sustaining Bd transmission associated with X. laevis. The abundance of these native amphibians suggested no significant negative population-level effect after the decades of co-occurrence.

6.
Development ; 138(24): 5451-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22110059

RESUMEN

As studies aim increasingly to understand key, evolutionarily conserved properties of biological systems, the ability to move transgenesis experiments efficiently between organisms becomes essential. DNA constructions used in transgenesis usually contain four elements, including sequences that facilitate transgene genome integration, a selectable marker and promoter elements driving a coding gene. Linking these four elements in a DNA construction, however, can be a rate-limiting step in the design and creation of transgenic organisms. In order to expedite the construction process and to facilitate cross-species collaborations, we have incorporated the four common elements of transgenesis into a modular, recombination-based cloning system called pTransgenesis. Within this framework, we created a library of useful coding sequences, such as various fluorescent protein, Gal4, Cre-recombinase and dominant-negative receptor constructs, which are designed to be coupled to modular, species-compatible selectable markers, promoters and transgenesis facilitation sequences. Using pTransgenesis in Xenopus, we demonstrate Gal4-UAS binary expression, Cre-loxP-mediated fate-mapping and the establishment of novel, tissue-specific transgenic lines. Importantly, we show that the pTransgenesis resource is also compatible with transgenesis in Drosophila, zebrafish and mammalian cell models. Thus, the pTransgenesis resource fosters a cross-model standardization of commonly used transgenesis elements, streamlines DNA construct creation and facilitates collaboration between researchers working on different model organisms.


Asunto(s)
Animales Modificados Genéticamente/genética , Biblioteca de Genes , Técnicas de Transferencia de Gen , Animales , Drosophila/genética , Integrasas/metabolismo , Factores de Transcripción/genética , Transgenes , Xenopus/genética , Pez Cebra/genética
7.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38832520

RESUMEN

Recent progress in human disease genetics is leading to rapid advances in understanding pathobiological mechanisms. However, the sheer number of risk-conveying genetic variants being identified demands in vivo model systems that are amenable to functional analyses at scale. Here we provide a practical guide for using the diploid frog species Xenopus tropicalis to study many genes and variants to uncover conserved mechanisms of pathobiology relevant to human disease. We discuss key considerations in modelling human genetic disorders: genetic architecture, conservation, phenotyping strategy and rigour, as well as more complex topics, such as penetrance, expressivity, sex differences and current challenges in the field. As the patient-driven gene discovery field expands significantly, the cost-effective, rapid and higher throughput nature of Xenopus make it an essential member of the model organism armamentarium for understanding gene function in development and in relation to disease.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Genéticas Congénitas , Xenopus , Animales , Xenopus/genética , Humanos , Enfermedades Genéticas Congénitas/genética , Fenotipo
8.
Proc Natl Acad Sci U S A ; 107(12): 5345-50, 2010 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-20212162

RESUMEN

The digestion of lignocellulose is attracting attention both in terms of basic research into its metabolism by microorganisms and animals, and also as a means of converting plant biomass into biofuels. Limnoriid wood borers are unusual because, unlike other wood-feeding animals, they do not rely on symbiotic microbes to help digest lignocellulose. The absence of microbes in the digestive tract suggests that limnoriid wood borers produce all the enzymes necessary for lignocellulose digestion themselves. In this study we report that analysis of ESTs from the digestive system of Limnoria quadripunctata reveals a transcriptome dominated by glycosyl hydrolase genes. Indeed, > 20% of all ESTs represent genes encoding putative cellulases, including glycosyl hydrolase family 7 (GH7) cellobiohydrolases. These have not previously been reported in animal genomes, but are key digestive enzymes produced by wood-degrading fungi and symbiotic protists in termite guts. We propose that limnoriid GH7 genes are important for the efficient digestion of lignocellulose in the absence of gut microbes. Hemocyanin transcripts were highly abundant in the hepatopancreas transcriptome. Based on recent studies indicating that these proteins may function as phenoloxidases in isopods, we discuss a possible role for hemocyanins in lignin decomposition.


Asunto(s)
Isópodos/genética , Isópodos/metabolismo , Lignina/metabolismo , Animales , Biomasa , Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Celulasas/genética , Celulasas/metabolismo , Ecosistema , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Etiquetas de Secuencia Expresada , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Perfilación de la Expresión Génica , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Hemocianinas/genética , Hemocianinas/metabolismo , Hepatopáncreas/metabolismo , Isópodos/anatomía & histología , Isópodos/microbiología , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Filogenia , Madera
9.
Cold Spring Harb Protoc ; 2023(6): pdb.top107045, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283837

RESUMEN

Our understanding of biological systems has for many years been heavily influenced by experimental approaches that exploit genetic methods. These include gain-of-function experiments that overexpress transgenes or ectopically express injected RNA and loss-of-function experiments that knock out genes or knock down RNAs. Here, we review how these methods have been applied in Xenopus frogs and introduce a variety of protocols for genetic manipulation of Xenopus laevis and Xenopus tropicalis.


Asunto(s)
Edición Génica , Proteínas de Xenopus , Animales , Xenopus laevis/genética , Xenopus/genética , Edición Génica/métodos , Proteínas de Xenopus/genética , ARN
10.
Genesis ; 50(3): 155-63, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22253050

RESUMEN

Xenopus is an essential vertebrate model system for biomedical research that has contributed to important discoveries in many disciplines, including cell biology, molecular biology, physiology, developmental biology, and neurobiology. However, unlike other model systems no central repository/stock center for Xenopus had been established until recently. Similar to mouse, zebrafish, and fly communities, which have established stock centers, Xenopus researchers need to maintain and distribute rapidly growing numbers of inbred, mutant, and transgenic frog strains, along with DNA and protein resources, and individual laboratories struggle to accomplish this efficiently. In the last 5 years, two resource centers were founded to address this need: the European Xenopus Resource Center (EXRC) at the University of Portsmouth in England, and the National Xenopus Resource (NXR) at the Marine Biological Laboratory in Woods Hole, MA. These two centers work together to provide resources and support to the Xenopus research community. The EXRC and NXR serve as stock centers and acquire, produce, maintain and distribute mutant, inbred and transgenic Xenopus laevis and Xenopus tropicalis lines. Independently, the EXRC is a repository for Xenopus cDNAs, fosmids, and antibodies; it also provides oocytes and wild-type frogs within the United Kingdom. The NXR will complement these services by providing research training and promoting intellectual interchange through hosting mini-courses and workshops and offering space for researchers to perform short-term projects at the Marine Biological Laboratory. Together the EXRC and NXR will enable researchers to improve productivity by providing resources and expertise to all levels, from graduate students to experienced PIs. These two centers will also enable investigators that use other animal systems to take advantage of Xenopus' unique experimental features to complement their studies.


Asunto(s)
Xenopus/genética , Crianza de Animales Domésticos , Animales , Bancos de Muestras Biológicas , Europa (Continente) , Modelos Animales , Investigación , Estados Unidos
11.
BMC Genomics ; 13: 496, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22992290

RESUMEN

BACKGROUND: Mitochondrial genomes comprise a small but critical component of the total DNA in eukaryotic organisms. They encode several key proteins for the cell's major energy producing apparatus, the mitochondrial respiratory chain. Additionally, their nucleotide and amino acid sequences are of great utility as markers for systematics, molecular ecology and forensics. Their characterization through nucleotide sequencing is a fundamental starting point in mitogenomics. Methods to amplify complete mitochondrial genomes rapidly and efficiently from microgram quantities of tissue of single individuals are, however, not always available. Here we validate two approaches, which combine long-PCR with Roche 454 pyrosequencing technology, to obtain two complete mitochondrial genomes from individual amphibian species. RESULTS: We obtained two new xenopus frogs (Xenopus borealis and X. victorianus) complete mitochondrial genome sequences by means of long-PCR followed by 454 of individual genomes (approach 1) or of multiple pooled genomes (approach 2), the mean depth of coverage per nucleotide was 9823 and 186, respectively. We also characterised and compared the new mitogenomes against their sister taxa; X. laevis and Silurana tropicalis, two of the most intensely studied amphibians. Our results demonstrate how our approaches can be used to obtain complete amphibian mitogenomes with depths of coverage that far surpass traditional primer-walking strategies, at either the same cost or less. Our results also demonstrate: that the size, gene content and order are the same among xenopus mitogenomes and that S. tropicalis form a separate clade to the other xenopus, among which X. laevis and X. victorianus were most closely related. Nucleotide and amino acid diversity was found to vary across the xenopus mitogenomes, with the greatest diversity observed in the Complex 1 gene nad4l and the least diversity observed in Complex 4 genes (cox1-3). All protein-coding genes were shown to be under strong negative (purifying selection), with genes under the strongest pressure (Complex 4) also being the most highly expressed, highlighting their potentially crucial functions in the mitochondrial respiratory chain. CONCLUSIONS: Next generation sequencing of long-PCR amplicons using single taxon or multi-taxon approaches enabled two new species of Xenopus mtDNA to be fully characterized. We anticipate our complete mitochondrial genome amplification methods to be applicable to other amphibians, helpful for identifying the most appropriate markers for differentiating species, populations and resolving phylogenies, a pressing need since amphibians are undergoing drastic global decline. Our mtDNAs also provide templates for conserved primer design and the assembly of RNA and DNA reads following high throughput "omic" techniques such as RNA- and ChIP-seq. These could help us better understand how processes such mitochondrial replication and gene expression influence xenopus growth and development, as well as how they evolved and are regulated.


Asunto(s)
Variación Genética , Genoma Mitocondrial/genética , Filogenia , Selección Genética , Xenopus/genética , Animales , Secuencia de Bases , Teorema de Bayes , Etiquetas de Secuencia Expresada , Marcadores Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Modelos Genéticos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Especificidad de la Especie
12.
Cold Spring Harb Protoc ; 2022(6): Pdb.prot107011, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35135888

RESUMEN

Transgenic frogs can be very efficiently generated using I-SceI meganuclease, a nuclease with an 18-bp recognition site. The desired transgene must be flanked by I-SceI sites, in either a plasmid or a polymerase chain reaction (PCR) product. After a short in vitro digestion with the meganuclease, the complete reaction is injected into fertilized eggs, where the enzyme mediates genomic integration by an unknown mechanism. Posttransgenesis development is typically normal, and up to 70% of the embryos integrate the transgene.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo II , Proteínas de Saccharomyces cerevisiae , Animales , Animales Modificados Genéticamente , Técnicas de Transferencia de Gen , Proteínas de Saccharomyces cerevisiae/genética , Xenopus laevis/genética
13.
Free Radic Biol Med ; 181: 118-129, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35131446

RESUMEN

Unravelling how reactive oxygen species regulate fundamental biological processes is hampered by the lack of an accessible microplate technique to quantify target-specific protein thiol redox state in percentages and moles. To meet this unmet need, we present RedoxiFluor. RedoxiFluor uses two spectrally distinct thiol-reactive fluorescent conjugated reporters, a capture antibody, detector antibody and a standard curve to quantify target-specific protein thiol redox state in relative percentage and molar terms. RedoxiFluor can operate in global mode to assess the redox state of the bulk thiol proteome and can simultaneously assess the redox state of multiple targets in array mode. Extensive proof-of-principle experiments robustly validate the assay principle and the value of each RedoxiFluor mode in diverse biological contexts. In particular, array mode RedoxiFluor shows that the response of redox-regulated phosphatases to lipopolysaccharide (LPS) differs in human monocytes. Specifically, LPS increased PP2A-, SHP1-, PTP1B-, and CD45-specific reversible thiol oxidation without changing the redox state of calcineurin, PTEN, and SHP2. The relative percentage and molar terms are interpretationally useful and define the most complete and extensive microplate redox analysis achieved to date. RedoxiFluor is a new antibody technology with the power to quantify relative target-specific protein thiol redox state in percentages and moles relative to the bulk thiol proteome and selected other targets in a widely accessible, simple and easily implementable microplate format.


Asunto(s)
Estrés Oxidativo , Compuestos de Sulfhidrilo , Humanos , Oxidación-Reducción , Proteoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo
14.
Cold Spring Harb Protoc ; 2022(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34531330

RESUMEN

Combining the power of Xenopus developmental biology with CRISPR-based technologies promises great discoveries in understanding and treating human genetic disorders. Here we provide a practical pipeline for how to go from known disease gene(s) or risk gene(s) of interest to methods for gaining functional insight into the contribution of these genes to disorder etiology in humans.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Humanos , Xenopus laevis/genética
15.
Free Radic Biol Med ; 174: 272-280, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34418513

RESUMEN

Measuring protein thiol redox state is central to understanding redox signalling in health and disease. The lack of a microplate assay to measure target specific protein thiol redox state rate-limits progress on accessibility grounds: redox proteomics is inaccessible to most. Developing a microplate assay is important for accelerating discovery by widening access to protein thiol redox biology. Beyond accessibility, enabling high throughput time- and cost-efficient microplate analysis is important. To meet the pressing need for a microplate assay to measure protein thiol redox state, we present the Antibody-Linked Oxi-State Assay (ALISA). ALISA uses a covalently bound capture antibody to bind a thiol-reactive fluorescent conjugated maleimide (F-MAL) decorated target. The capture antibody-target complex is labelled with an amine-reactive fluorescent N-hydroxysuccinimide ester (F-NHS) to report total protein. The covalent bonds that immobilise the capture antibody to the epoxy group functionalised microplate enable one to selectively elute the target. Target specific redox state is ratiometrically calculated as: F-MAL (i.e., reversible thiol oxidation)/F-NHS (i.e., total protein). After validating the assay principle (i.e., increased target specific reversible thiol oxidation increases the ratio), we used ALISA to determine whether fertilisation-a fundamental biological process-changes Akt, a serine/threonine protein kinase, specific reversible thiol oxidation. Fertilisation significantly decreases Akt specific reversible thiol oxidation in Xenopus laevis 2-cell zygotes compared to unfertilised eggs. ALISA is an accessible microplate assay to advance knowledge of protein thiol redox biology in health and disease.


Asunto(s)
Estrés Oxidativo , Compuestos de Sulfhidrilo , Oxidación-Reducción , Proteínas/metabolismo , Proteómica
16.
Gene Expr Patterns ; 40: 119183, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34020009

RESUMEN

Neuroblastoma is a neural crest-derived paediatric cancer that is the most common and deadly solid extracranial tumour of childhood. It arises when neural crest cells fail to follow their differentiation program to give rise to cells of the sympathoadrenal lineage. These undifferentiated cells can proliferate and migrate, forming tumours mostly found associated with the adrenal glands. Activating mutations in the kinase domain of anaplastic lymphoma kinase (ALK) are linked to high-risk cases, where extensive therapy is ineffective. However, the role of ALK in embryonic development, downstream signal transduction and in metastatic transformation of the neural crest is poorly understood. Here, we demonstrate high conservation of the ALK protein sequences among vertebrates. We then examine alk mRNA expression in the frog models Xenopus laevis and Xenopus tropicalis. Using in situ hybridisation of Xenopus embryos, we show that alk is expressed in neural crest domains throughout development, suggesting a possible role in neuroblastoma initiation. Lastly, RT-qPCR analyses show high levels of alk expression at tadpole stages. Collectively, these data may begin to elucidate how alk functions in neural crest cells and how its deregulation can result in tumorigenesis.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Cresta Neural/metabolismo , Proteínas de Xenopus/genética , Quinasa de Linfoma Anaplásico/metabolismo , Animales , Cresta Neural/embriología , Proteínas de Xenopus/metabolismo , Xenopus laevis
17.
Genome Med ; 13(1): 34, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632302

RESUMEN

BACKGROUND: Coat protein complex 1 (COPI) is integral in the sorting and retrograde trafficking of proteins and lipids from the Golgi apparatus to the endoplasmic reticulum (ER). In recent years, coat proteins have been implicated in human diseases known collectively as "coatopathies". METHODS: Whole exome or genome sequencing of two families with a neuro-developmental syndrome, variable microcephaly and cataracts revealed biallelic variants in COPB1, which encodes the beta-subunit of COPI (ß-COP). To investigate Family 1's splice donor site variant, we undertook patient blood RNA studies and CRISPR/Cas9 modelling of this variant in a homologous region of the Xenopus tropicalis genome. To investigate Family 2's missense variant, we studied cellular phenotypes of human retinal epithelium and embryonic kidney cell lines transfected with a COPB1 expression vector into which we had introduced Family 2's mutation. RESULTS: We present a new recessive coatopathy typified by severe developmental delay and cataracts and variable microcephaly. A homozygous splice donor site variant in Family 1 results in two aberrant transcripts, one of which causes skipping of exon 8 in COPB1 pre-mRNA, and a 36 amino acid in-frame deletion, resulting in the loss of a motif at a small interaction interface between ß-COP and ß'-COP. Xenopus tropicalis animals with a homologous mutation, introduced by CRISPR/Cas9 genome editing, recapitulate features of the human syndrome including microcephaly and cataracts. In vitro modelling of the COPB1 c.1651T>G p.Phe551Val variant in Family 2 identifies defective Golgi to ER recycling of this mutant ß-COP, with the mutant protein being retarded in the Golgi. CONCLUSIONS: This adds to the growing body of evidence that COPI subunits are essential in brain development and human health and underlines the utility of exome and genome sequencing coupled with Xenopus tropicalis CRISPR/Cas modelling for the identification and characterisation of novel rare disease genes.


Asunto(s)
Alelos , Catarata/genética , Proteína Coatómero/genética , Variación Genética , Discapacidad Intelectual/genética , Microcefalia/genética , Adolescente , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Niño , Proteína Coatómero/química , Familia , Femenino , Humanos , Masculino , Mutación Missense/genética , Linaje , Síndrome , Xenopus
18.
Biochim Biophys Acta ; 1789(11-12): 675-80, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19665599

RESUMEN

We have previously shown that a critical region of the gata2 promoter contains an inverted CCAAT box and adopts a partial A-form DNA structure in vitro. At gastrula stages of development transcription requires binding of CBTF (CCAAT box transcription factor), a multi-subunit transcription factor, to this region. Xilf3 is one component of CBTF and the double stranded RNA binding domains (dsRBDs) of Xilf3 must be active for both binding to, and transcription from, this promoter. Here we determine the contribution of DNA sequence and structure at the gata2 promoter to transcriptional activity. In all the constructs we tested a CCAAT box was a requirement for full activity. However, base substitutions that increase B-form structure propensity in the sequences flanking the CCAAT box are equally able to decrease activity even if a CCAAT box is present. In contrast, mutations that maintain A-form propensity in these regions also maintain, or increase, transcription factor binding and transcriptional activity. We propose a two-component model for the interaction of CBTF with the gata2 promoter, requiring both a CCAAT sequence and flanking A-form DNA structures. These results support a novel role for dsRBDs in transcriptional regulation and suggest a function for A-form DNA in vivo.


Asunto(s)
ADN de Forma A/metabolismo , Embrión no Mamífero/metabolismo , Factor de Transcripción GATA2/genética , Regiones Promotoras Genéticas/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Dicroismo Circular , ADN de Forma A/química , ADN de Forma A/genética , Ensayo de Cambio de Movilidad Electroforética , Embrión no Mamífero/embriología , Factor de Transcripción GATA2/metabolismo , Regulación del Desarrollo de la Expresión Génica , Luciferasas/genética , Luciferasas/metabolismo , Mutación , Proteínas del Factor Nuclear 90/genética , Proteínas del Factor Nuclear 90/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología
19.
Cold Spring Harb Protoc ; 2020(9): 105593, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31900321

RESUMEN

Frog-specific antibodies usually must be raised for work in Xenopus Selecting a host animal whose immune system will respond to a target antigen with an antibody response is essential to obtaining high-quality antibodies. To determine whether an immunized animal has produced antibodies against an antigen, western blotting using Xenopus embryo or egg extract as the protein source can be performed as described here. When a protein of the expected size is detected by western blotting in the immune sera but not the preimmune sera, the antibody has been successfully raised.


Asunto(s)
Anticuerpos/metabolismo , Inmunidad , Inmunoensayo/métodos , Xenopus laevis/metabolismo , Animales , Western Blotting , Embrión no Mamífero/metabolismo , Xenopus laevis/embriología
20.
Cold Spring Harb Protoc ; 2020(9): 105619, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31900322

RESUMEN

Antibody production for work in Xenopus involves the immunization of a host with an antigen, usually a Xenopus protein or peptide alien to the host. The antibody-containing serum, normally returned to the investigator by the company/bioresource unit where it was raised, is comprised of all proteins not used in blood clotting (coagulation) and all the electrolytes, antibodies, antigens, hormones, and any exogenous substances, such as drugs and microorganisms, that were in the blood. It is often necessary to separate the target antibody from the rest of the serum components to minimize nonspecific protein-antibody interactions in downstream applications (e.g., when performing western blotting). Most antibody production companies provide a column containing the peptide coupled to glass beads. A purification procedure for using this type of column (i.e., one that is based on controlled-pore glass beads) is described here.


Asunto(s)
Anticuerpos/aislamiento & purificación , Péptidos/inmunología , Xenopus laevis/metabolismo , Animales , Cromatografía de Afinidad , Diálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA