Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 33(10): 65, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36138240

RESUMEN

Chitosan coatings have shown good bioactive properties such as antibacterial and antiplatelet properties, especially on blood-contacted biomedical materials. However, as blood-contacted biomedical device, the intravascular metal stent has a burden with adverse effects on the structural integrity, such as mechanical load during implantation and substrate degradation if a biodegradable metal is used as the substrate. It is unquestionably true that the structural integrity of the coated stent is essential. The adhesion strength between the coating and the substrate positively affects it. Silane and polydopamine (PDA) interstitial layers have been investigated to improve the corrosion resistance, biosafety and adhesion strength. This work addressed this challenge by using PDA as an intermediate and glutaraldehyde as a linking agent to establish a strong link between the polymer coating and the intermediate coating. Compared with PDA-only and glutaraldehyde-linked silane layer, the novel coating displayed a notable increase in adhesion. When compared with the bare Ni-free stainless steel, the performance of the novel coating was not significantly different. This novel chitosan film on the glutaraldehyde linked-PDA interface can be applied to various metallic substrates where synergic bioactive and anticorrosive effects of PDA interstitial coating and chitosan are needed. Graphical abstract.


Asunto(s)
Quitosano , Antibacterianos/química , Quitosano/química , Materiales Biocompatibles Revestidos/química , Glutaral , Indoles , Polímeros/química , Silanos , Acero Inoxidable/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA