Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(2): e0108023, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38131673

RESUMEN

Seventy-five years ago, first-generation tetracyclines demonstrated limited efficacy in the treatment of tuberculosis but were more toxic than efficacious. We performed a series of pharmacokinetic/pharmacodynamic (PK/PD) experiments with a potentially safer third-generation tetracycline, omadacycline, for the treatment of multidrug-resistant tuberculosis (MDR-TB). Mycobacterium tuberculosis (Mtb) H37Rv and an MDR-TB clinical strain (16D) were used in the minimum inhibitory concentration (MIC) and static concentration-response studies in test tubes, followed by a PK/PD study using the hollow fiber system model of TB (HFS-TB) that examined six human-like omadacycline doses. The inhibitory sigmoid maximal effect (Emax) model and Monte Carlo experiments (MCEs) were used for data analysis and clinical dose-finding, respectively. The omadacycline MIC for both Mtb H37Rv and MDR-TB clinical strain was 16 mg/L but dropped to 4 mg/L with daily drug supplementation to account for omadacycline degradation. The Mycobacteria Growth Indicator Tube MIC was 2 mg/L. In the test tubes, omadacycline killed 4.39 log10 CFU/mL in 7 days. On Day 28 of the HFS-TB study, the Emax was 4.64 log10 CFU/mL, while exposure mediating 50% of Emax (EC50) was an area under the concentration-time curve to MIC (AUC0-24/MIC) ratio of 22.86. This translates to PK/PD optimal exposure or EC80 as AUC0-24/MIC of 26.93. The target attainment probability of the 300-mg daily oral dose was 90% but fell at MIC ≧4 mg/L. Omadacycline demonstrated efficacy and potency against both drug-susceptible and MDR-TB. Further studies are needed to identify the omadacycline effect in combination therapy for the treatment of both drug-susceptible and MDR-TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tetraciclinas/farmacología , Pruebas de Sensibilidad Microbiana
2.
J Antimicrob Chemother ; 79(1): 96-99, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37946564

RESUMEN

BACKGROUND: Poor sustained sputum culture conversion rates with the standard-of-care therapy highlight the need for better drugs to treat Mycobacterium avium complex pulmonary disease (MAC-PD). OBJECTIVE: To determine the pharmacokinetics/pharmacodynamics (PK/PD)-optimized exposure of sarecycline and its potential role in treating MAC-PD. METHODS: We performed MIC studies with MAC ATCC 700898 and 19 clinical isolates and test-tube static concentration-response studies. A dynamic hollow-fibre system model of intracellular MAC (HFS-MAC) study was performed mimicking six human-equivalent sarecycline dose concentration-time profiles to identify the PK/PD optimal exposure of sarecycline for MAC kill. The inhibitory sigmoid maximal effect (Emax) model was used for PK/PD analysis. RESULTS: The sarecycline MIC of MAC ATCC 700898 was 1 mg/L, while the MIC for the 19 clinical strains ranged between 32 and >256 mg/L. The concentration mediating 50% of Emax (EC50) was similar between intracellular and extracellular MAC. In the HFS-MAC, all six sarecycline doses killed intracellular MAC, with an Emax of 1.0 log10 cfu/mL below Day 0 burden (stasis). The sarecycline EC80 (optimal) exposure was identified as AUC0-24/MIC = 139.46. CONCLUSIONS: Sarecycline demonstrated anti-MAC Emax in the HFS-MAC model better than ethambutol but worse than omadacycline (>5 log10 cfu/mL below stasis) in HFS-MAC. However, since currently approved highest oral sarecycline dose achieves an AUC0-24 of 48.2 mg·h/L and MAC MICs are >32 mg/L, the target AUC0-24/MIC of 139.46 is unlikely to be achieved in patients.


Asunto(s)
Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare , Humanos , Antibacterianos/uso terapéutico , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Infección por Mycobacterium avium-intracellulare/microbiología , Etambutol , Pruebas de Sensibilidad Microbiana
3.
J Infect Dis ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036299

RESUMEN

BACKGROUND: Only 35.6%-50.8% of patients with Mycobacterium avium complex (MAC) pulmonary disease achieve sustained sputum culture conversion (SSCC) on treatment with the azithromycin-ethambutol-rifabutin standard of care (SOC). We tested the efficacy of ceftriaxone, a ß-lactam with a lung penetration ratio of 12.18-fold. METHODS: We mimicked lung concentration-time profiles of seven ceftriaxone once-daily doses for 28 days in the hollow fiber system model of intracellular MAC (HFS- MAC). Monte Carlo experiments were used for dose selection.We also compared the once-daily ceftriaxone monotherapy to three-drug SOC against five MAC clinical isolates in HFS-MAC using γ (kill)-slopes. Results were translated to SSCC rates. RESULTS: Ceftriaxone killed 1.02-3.82 log10 cfu/mL in dose-response studies. Ceftriaxone 2G once-daily was identified as the optimal dose. Ceftriaxone killed all five strains below day 0 versus 2/5 for SOC. The median γ (95% confidence interval) was 0.49(0.47-0.52) log10 cfu/mL/day for ceftriaxone and 0.38(0.34-0.43) log10 cfu/mL/day for SOC. In patients, the SOC was predicted to achieve SSCC rates of 39.3%(36%-42%) at 6 months (similar to meta-analyses results). The SOC SSCC was 50% at 8.18(3.64-27.66) months versus 3.58(2.20-7.23) months for ceftriaxone. Thus, ceftriaxone shortened time-to-SSCC 2.35-fold compared to SOC. CONCLUSION: Ceftriaxone is a promising agent for creation of short-course chemotherapy.

4.
Antimicrob Agents Chemother ; 67(4): e0140122, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36877034

RESUMEN

Antimicrobial susceptibility testing, based on clinical breakpoints that incorporate pharmacokinetics/pharmacodynamics (PK/PD) and clinical outcomes, is becoming a new standard in guiding individual patient therapy as well as for drug resistance surveillance. However, for most antituberculosis drugs, breakpoints are instead defined by the epidemiological cutoff values of the MIC of phenotypically wild-type strains irrespective of PK/PD or dose. In this study, we determined the PK/PD breakpoint for delamanid by estimating the probability of target attainment for the approved dose administered at 100 mg twice daily using Monte Carlo experiments. We used the PK/PD targets (0- to 24-h area under the concentration-time curve to MIC) identified in a murine chronic tuberculosis model, hollow fiber system model of tuberculosis, early bactericidal activity studies of patients with drug-susceptible tuberculosis, and population pharmacokinetics in patients with tuberculosis. At the MIC of 0.016 mg/L, determined using Middlebrook 7H11 agar, the probability of target attainment was 100% in the 10,000 simulated subjects. The probability of target attainment fell to 25%, 40%, and 68% for PK/PD targets derived from the mouse model, the hollow fiber system model of tuberculosis, and patients, respectively, at the MIC of 0.031 mg/L. This indicates that an MIC of 0.016 mg/L is the delamanid PK/PD breakpoint for delamanid at 100 mg twice daily. Our study demonstrated that it is feasible to use PK/PD approaches to define a breakpoint for an antituberculosis drug.


Asunto(s)
Antituberculosos , Método de Montecarlo , Farmacocinética , Antituberculosos/administración & dosificación , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos , Modelos Animales
5.
Antimicrob Agents Chemother ; 67(11): e0082023, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37850741

RESUMEN

Echinocandins like anidulafungin are first-line therapies for candidemia and invasive candidiasis, but their dosing may be suboptimal in obese patients. Our objective was to quantify anidulafungin exposure in a cohort of adults across a wide body size range to test if body size affects anidulafungin pharmacokinetics (PK). We enrolled 20 adults between the ages of 18 and 80 years, with an equal distribution of patients above and below a body mass index of 30 kg/m2. A single 100-mg dose of anidulafungin was administered, followed by intensive sampling over 72 h. Population PK analysis was used to identify and compare covariates of anidulafungin PK parameters. Monte Carlo simulations were performed to compute the probability of target attainment (PTA) based on alternative dosing regimens. Participants (45% males) had a median (range) age of 45 (21-78) years and a median (range) weight of 82.7 (42.4-208.3) kg. The observed median (range) of AUC0-∞ was 106.4 (51.9, 138.4) mg∙h/L. Lean body weight (LBW) and adjusted body weight (AdjBW) were more influential than weight as covariates of anidulafungin PK parameters. The conventional 100 mg daily maintenance is predicted to have a PTA below 90% in adults with an LBW > 55 kg or an AdjBW > 75 kg. A daily maintenance dose of 150-200 mg is predicted in these heavier adults. Anidulafungin AUC0-∞ declines with increasing body size. A higher maintenance dose will increase the PTA compared to the current approach in obese patients.


Asunto(s)
Antifúngicos , Candidiasis Invasiva , Adulto , Masculino , Humanos , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Femenino , Anidulafungina/uso terapéutico , Antifúngicos/farmacocinética , Obesidad/tratamiento farmacológico , Peso Corporal , Candidiasis Invasiva/tratamiento farmacológico , Tamaño Corporal , Método de Montecarlo
6.
Artículo en Inglés | MEDLINE | ID: mdl-33558291

RESUMEN

Standard therapy [isoniazid, rifampin, ethambutol], with or without a macrolide, for pulmonary Mycobacterium kansasii lasts more than a year. Therefore, shorter treatment duration regimens are required. We used data from 32 Taiwanese patients treated with standard therapy who were followed using repetitive sampling-based sputum Mkn time-to-positivity in liquid cultures to calculate kill slopes [γ] based on ordinary differential equations and time-to-extinction of each patient's bacterial burden. The γ was 0.18 [95% Confidence Interval (CI): 0.16-0.20] log10 CFU/mL/day on standard therapy. Next, we identified Mkn time-to-extinction in the hollow fiber system model of pulmonary M. kansasii disease [HFS-Mkn] treated with standard therapy, which was a γ of 0.60 [95% CI: 0.45-0.69) log10 CFU/mL/day. The γs and time-to-extinctions between the two datasets formed structure-preserving maps based on category theory: thus, we could map them from one to the other using morphisms. This mapping identified a multistep non-linear transformation-factor for time-to-extinction from HFS-Mkn to patients. Next, a head-to-head study in the HFS-Mkn identified median time-to-extinction for standard therapy of 38.7 [95% CI: 29.1-53.2) days, isoniazid-rifampin-ethambutol-moxifloxacin of 21.7 [95% CI: 19.1-25) days, isoniazid-rifampin-moxifloxacin of 22 [96% CI: 20.1-24.5) days, and rifampin-moxifloxacin-tedizolid of 20.7 [95% CI:18.5-29) days. Our transformation-factor based translation predicted the proportion of patients of 90.7 [88.74-92.35)% achieving cure with standard therapy at 12 months, and 6-months cure rates of 99.8 [95% CI: 99.27-99.95)% for isoniazid-rifampin-ethambutol-moxifloxacin, 92.2 [90.37-93.71)% for isoniazid-rifampin-moxifloxacin, and 99.9 [99.44-99.99)% for rifampin-moxifloxacin-tedizolid. Thus, rifampin-moxifloxacin-tedizolid and isoniazid-rifampin-ethambutol-moxifloxacin are predicted to be short-course chemotherapy regimens for pulmonary M. kansasii disease.

7.
J Antimicrob Chemother ; 78(4): 953-964, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36794692

RESUMEN

BACKGROUND: The hollow-fibre system model of tuberculosis (HFS-TB) has been endorsed by regulators; however, application of HFS-TB requires a thorough understanding of intra- and inter-team variability, statistical power and quality controls. METHODS: Three teams evaluated regimens matching those in the Rapid Evaluation of Moxifloxacin in Tuberculosis (REMoxTB) study, plus two high-dose rifampicin/pyrazinamide/moxifloxacin regimens, administered daily for up to 28 or 56 days against Mycobacterium tuberculosis (Mtb) under log-phase growth, intracellular growth or semidormant growth under acidic conditions. Target inoculum and pharmacokinetic parameters were pre-specified, and the accuracy and bias at achieving these calculated using percent coefficient of variation (%CV) at each sampling point and two-way analysis of variance (ANOVA). RESULTS: A total of 10 530 individual drug concentrations, and 1026 individual cfu counts were measured. The accuracy in achieving intended inoculum was >98%, and >88% for pharmacokinetic exposures. The 95% CI for the bias crossed zero in all cases. ANOVA revealed that the team effect accounted for <1% of variation in log10 cfu/mL at each timepoint. The %CV in kill slopes for each regimen and different Mtb metabolic populations was 5.10% (95% CI: 3.36%-6.85%). All REMoxTB arms exhibited nearly identical kill slopes whereas high dose regimens were 33% faster. Sample size analysis revealed that at least three replicate HFS-TB units are needed to identify >20% difference in slope, with a power of >99%. CONCLUSIONS: HFS-TB is a highly tractable tool for choosing combination regimens with little variability between teams, and between replicates.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos/farmacocinética , Moxifloxacino/farmacología , Reproducibilidad de los Resultados , Modelos Biológicos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Quimioterapia Combinada
8.
Antimicrob Agents Chemother ; 66(9): e0068722, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35976006

RESUMEN

The 12-month therapy duration for the treatment of Mycobacterium kansasii pulmonary disease calls for more efficacious drugs for better treatment outcomes and to shorten the therapy duration. We performed (i) omadacycline MIC with M. kansasii ATCC 12478 strain and 21 clinical isolates, (ii) dose-response study in the hollow fiber system model of M. kansasii (HFS-Mkn) with six human equivalent omadacycline daily doses to determine the optimal drug exposure for the maximal kill, and (iii) a second HFS-Mkn study to determine the efficacy of omadacycline (300 mg/day) plus moxifloxacin (600 mg/day) plus tedizolid (200 mg/day) combination regimen with standard regimen as comparator. GraphPad Prism was used for data analysis and graphing. MIC of the reference strain was 4 mg/L but ranged from 8 to 32 mg/L among the 21 clinical isolates. In the HFS-Mkn, the exposure required for 50% of the maximal effect (EC50) was an omadacycline area under the concentration-time curve to MIC (AUC0-24/MIC) ratio of 1.95. The optimal exposure was an AUC0-24/MIC of 3.05, which could be achieved with 300 mg/day clinical dose. The omadacycline-moxifloxacin-tedizolid combination sterilized the HFS-Mkn in 14 days with a linear-regression based kill rate of -0.309 ± 0.044 log10 CFU/mL/day compared to the kill rate of -0.084 ± 0.036log10 CFU/mL/day with the standard regimen or 3.7-times faster. Omadacycline has efficacy against M. kansasii and could be used at 300 mg/day in combination with moxifloxacin and tedizolid for the treatment of M. kansasii pulmonary diseases with the potential to shorten the currently recommended 12-month therapy duration.


Asunto(s)
Enfermedades Pulmonares , Mycobacterium kansasii , Antibacterianos/uso terapéutico , Humanos , Enfermedades Pulmonares/microbiología , Pruebas de Sensibilidad Microbiana , Moxifloxacino/farmacología , Moxifloxacino/uso terapéutico , Tetraciclinas
9.
Antimicrob Agents Chemother ; 66(4): e0232021, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35315686

RESUMEN

There is limited high-quality evidence to guide the optimal treatment of Mycobacterium kansasii pulmonary disease. We retrospectively collected clinical data from 33 patients with M. kansasii pulmonary disease to determine the time-to-sputum culture conversion (SCC) upon treatment with a standard combination regimen consist of isoniazid-rifampin-ethambutol. Next, MIC experiments with 20 clinical isolates were performed, followed by a dose-response study with the standard laboratory strain using the hollow-fiber system model of M. kansasii infection (HFS-Mkn). The inhibitory sigmoid maximum effect (Emax) model was used to describe the relationship between the bacterial burden and rifampin concentrations. Finally, in silico clinical trial simulations were performed to determine the clinical dose to achieve the optimal rifampin exposure in patients. The SCC rate in patients treated with combination regimen containing rifampin at 10 mg/kg of body weight/day was 73%, the mean time to SSC was 108 days, and the mean duration of therapy was 382 days. The MIC of the M. kansasii laboratory strain was 0.125 mg/L, whereas the MICs of the clinical isolates ranged between 0.5 and 4 mg/L. In the HFS-Mkn model, a maximum kill (Emax) of 7.82 log10 CFU/mL was recorded on study day 21. The effective concentration mediating 80% of the Emax (EC80) was calculated as the ratio of the maximum concentration of drug in serum for the free, unbound fraction (fCmax) to MIC of 34.22. The target attainment probability of the standard 10-mg/kg/day dose fell below 90% even at the MIC of 0.0625 mg/L. Despite the initial kill, there was M. kansasii regrowth with the standard rifampin dose in the HFS-Mkn model. Doses higher than 10 mg/kg/day, in combination with other drugs, need to be evaluated for better treatment outcome.


Asunto(s)
Enfermedades Pulmonares , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium kansasii , Antituberculosos/farmacología , Humanos , Enfermedades Pulmonares/microbiología , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Estudios Retrospectivos , Rifampin/uso terapéutico
10.
J Antimicrob Chemother ; 77(6): 1694-1705, 2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35257162

RESUMEN

OBJECTIVES: The standard of care (SOC) for the treatment of pulmonary Mycobacterium avium complex (MAC) disease (clarithromycin, rifabutin, and ethambutol) achieves sustained sputum conversion rates of only 54%. Thus, new treatments should be prioritized. METHODS: We identified the omadacycline MIC against one laboratory MAC strain and calculated drug half life in solution, which we compared with measured MAC doubling times. Next, we performed an omadacycline hollow fibre system model of intracellular MAC (HFS-MAC) exposure-effect study, as well as the three-drug SOC, using pharmacokinetics achieved in patient lung lesions. Data was analysed using bacterial kill slopes (γ-slopes) and inhibitory sigmoid Emax bacterial burden versus exposure analyses. Monte Carlo experiments (MCE) were used to identify the optimal omadacycline clinical dose. RESULTS: Omadacycline concentration declined in solution with a half-life of 27.7 h versus a MAC doubling time of 16.3 h, leading to artefactually high MICs. Exposures mediating 80% of maximal effect changed up to 8-fold depending on sampling day with bacterial burden versus exposure analyses, while γ-slope-based analyses gave a single robust estimate. The highest omadacycline monotherapy γ-slope was -0.114 (95% CI: -0.141 to -0.087) (r2 = 0.98) versus -0.114 (95% CI: -0.133 to -0.094) (r2 = 0.99) with the SOC. MCEs demonstrated that 450 mg of omadacycline given orally on the first 2 days followed by 300 mg daily would achieve the AUC0-24 target of 39.67 mg·h/L. CONCLUSIONS: Omadacycline may be a potential treatment option for pulmonary MAC, possibly as a back-bone treatment for a new MAC regimen and warrants future study in treatment of this disease.


Asunto(s)
Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare , Antibacterianos/farmacología , Claritromicina/farmacología , Quimioterapia Combinada , Etambutol/farmacocinética , Humanos , Pulmón , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Infección por Mycobacterium avium-intracellulare/microbiología , Tetraciclinas
11.
J Antimicrob Chemother ; 77(10): 2876-2885, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35929190

RESUMEN

BACKGROUND: Listeriosis is an orphan disease, which is nevertheless fatal in immunocompromised people. CRS0540 is a novel PolC DNA polymerase inhibitor that has demonstrated good in vitro and in vivo activity against Listeria monocytogenes. METHODS: Rodent-to-human allometry projection-based human population pharmacokinetics of CRS0540 were used for all studies. CRS0540 pharmacokinetics/pharmacodynamics studies in an intracellular hollow-fibre system model of disseminated listeriosis (HFS-Lister) examined the effect of eight treatment doses, administered daily over 7 days, in duplicate units. Total bacterial burden versus AUC/MIC exposures on each day were modelled using the inhibitory sigmoid Emax model, while CRS0540-resistant bacterial burden was modelled using a quadratic function. Ten thousand-subject Monte Carlo simulations were used to predict an optimal clinical dose for treatment. RESULTS: The mean CRS0540 intracellular/extracellular AUC0-24 ratio was 34.07 (standard error: 15.70) as measured in the HFS-Lister. CRS0540 demonstrated exposure-dependent bactericidal activity in the HFS-Lister, with the highest exposure killing approximately 5.0 log10 cfu/mL. The free drug AUC0-24/MIC associated with 80% of maximal kill (EC80) was 36.4. Resistance emergence versus AUC/MIC was described by a quadratic function, with resistance amplification at an AUC/MIC of 54.8 and resistance suppression at an AUC/MIC of 119. Monte Carlo simulations demonstrated that for the EC80 target, IV CRS0540 doses of 100 mg/kg achieved PTAs of >90% at MICs up to 1.0 mg/L. CONCLUSIONS: CRS0540 is a promising orphan drug candidate for listeriosis. Future PK/PD studies comparing it with penicillin, the standard of care, could lead to this drug as a new treatment in immunocompromised patients.


Asunto(s)
Listeria monocytogenes , Listeriosis , Antibacterianos/farmacocinética , Antibacterianos/uso terapéutico , Humanos , Listeriosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Inhibidores de la Síntesis del Ácido Nucleico , Penicilinas
12.
J Antimicrob Chemother ; 77(9): 2489-2499, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35678468

RESUMEN

BACKGROUND: The WHO-endorsed shorter-course regimen for MDR-TB includes high-dose isoniazid. The pharmacokinetics of high-dose isoniazid within MDR-TB regimens has not been well described. OBJECTIVES: To characterize isoniazid pharmacokinetics at 5-15 mg/kg as monotherapy or as part of the MDR-TB treatment regimen. METHODS: We used non-linear mixed-effects modelling to evaluate the combined data from INHindsight, a 7 day early bactericidal activity study with isoniazid monotherapy, and PODRtb, an observational study of patients on MDR-TB treatment including terizidone, pyrazinamide, moxifloxacin, kanamycin, ethionamide and/or isoniazid. RESULTS: A total of 58 and 103 participants from the INHindsight and PODRtb studies, respectively, were included in the analysis. A two-compartment model with hepatic elimination best described the data. N-acetyltransferase 2 (NAT2) genotype caused multi-modal clearance, and saturable first-pass was observed beyond 10 mg/kg dosing. Saturable isoniazid kinetics predicted an increased exposure of approximately 50% beyond linearity at 20 mg/kg dosing. Participants treated with the MDR-TB regimen had a 65.6% lower AUC compared with participants on monotherapy. Ethionamide co-administration was associated with a 29% increase in isoniazid AUC. CONCLUSIONS: Markedly lower isoniazid exposures were observed in participants on combination MDR-TB treatment compared with monotherapy. Isoniazid displays saturable kinetics at doses >10 mg/kg. The safety implications of these phenomena remain unclear.


Asunto(s)
Arilamina N-Acetiltransferasa , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis Pulmonar , Antituberculosos/efectos adversos , Arilamina N-Acetiltransferasa/farmacología , Etionamida/farmacología , Etionamida/uso terapéutico , Humanos , Isoniazida/farmacocinética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Pulmonar/tratamiento farmacológico
13.
Antimicrob Agents Chemother ; 65(10): e0027821, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34310215

RESUMEN

Ethionamide is recommended as part of regimens to treat multidrug-resistant and rifampicin-resistant tuberculosis. This study was conducted to (i) describe the distribution of ethionamide MICs, (ii) describe the pharmacokinetics of ethionamide, and (iii) determine the probability of attaining target area under the concentration-time curve from 0 to 24 h (AUC0-24)/MIC values associated with suppression of resistant subpopulation and microbial kill. Participants received 15 to 20 mg of drug/kg of body weight of ethionamide daily (in 500- or 750-mg doses) as part of a multidrug regimen. Pretreatment MICs of ethionamide for Mycobacterium tuberculosis sputum isolates were determined using Sensititre MYCOTB MIC plates. Plasma concentrations of ethionamide (measured predose and at 2, 4, 6, 8, and 10 h postdose) were available for 84 patients. A one-compartment disposition model, including a liver compartment capturing hepatic extraction, best described ethionamide pharmacokinetics. Clearance and volume were allometrically scaled using fat-free mass. Isoniazid coadministration reduced ethionamide clearance by 31%, resulting in a 44% increase in AUC0-24. The median (range) MIC (n = 111) was 2.5 mg/liter (<0.3 to >40 mg/liter). Simulations showed increased daily doses of ethionamide (1,250 mg, 1,500 mg, and 1,750 mg for patients weighing ≤45 kg, 46 to 70 kg, and >70 kg, respectively) resulted in the probability of attaining an area under the concentration-time curve from 0 to 24 h for the free, unbound fraction of a drug (fAUC0-24)/MIC ratio of ≥42 in more than 90% of patients only at the lowest MIC of 0.3 mg/liter. The WHO-recommended doses of ethionamide do not achieve target concentrations even for the lowest MIC measured in the cohort.


Asunto(s)
Etionamida , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos , Isoniazida , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
14.
Am J Respir Crit Care Med ; 201(10): 1277-1291, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31860339

RESUMEN

Rationale: A human model to better understand tuberculosis immunopathogenesis and facilitate vaccine development is urgently needed.Objectives: We evaluated the feasibility, safety, and immunogenicity of live bacillus Calmette-Guérin (BCG) in a lung-oriented controlled human infection model.Methods: We recruited 106 healthy South African participants with varying degrees of tuberculosis susceptibility. Live BCG, sterile PPD, and saline were bronchoscopically instilled into separate lung segments (n = 65). A control group (n = 34) underwent a single bronchoscopy without challenge. The primary outcome was safety. Cellular and antibody immune signatures were identified in BAL before and 3 days after challenge using flow cytometry, ELISA, RNA sequencing, and mass spectrometry.Measurements and Main Results: The frequency of adverse events was low (9.4%; n = 10), similar in the challenge versus control groups (P = 0.8), and all adverse events were mild and managed conservatively in an outpatient setting. The optimal PPD and BCG dose was 0.5 TU and 104 cfu, respectively, based on changes in BAL cellular profiles (P = 0.02) and antibody responses (P = 0.01) at incremental doses before versus after challenge. At 104 versus 103 cfu BCG, there was a significant increase in number of differentially expressed genes (367 vs. 3; P < 0.001) and dysregulated proteins (64 vs. 0; P < 0.001). Immune responses were highly setting specific (in vitro vs. in vivo) and compartment specific (BAL vs. blood) and localized to the challenged lung segments.Conclusions: A lung-oriented mycobacterial controlled human infection model using live BCG and PPD is feasible and safe. These data inform the study of tuberculosis immunopathogenesis and strategies for evaluation and development of tuberculosis vaccine candidates.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacuna BCG/administración & dosificación , Broncoscopía , Inmunogenicidad Vacunal , Tuberculina/administración & dosificación , Tuberculosis/prevención & control , Administración Tópica , Adulto , Estudios de Factibilidad , Femenino , Humanos , Inmunidad Mucosa , Masculino , Adulto Joven
15.
Clin Infect Dis ; 70(8): 1774-1780, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-31560376

RESUMEN

Tuberculosis (TB) elimination requires innovative approaches. The new Global Tuberculosis Network (GTN) aims to conduct research on key unmet therapeutic and diagnostic needs in the field of TB elimination using multidisciplinary, multisectorial approaches. The TB Pharmacology section within the new GTN aims to detect and study the current knowledge gaps, test potential solutions using human pharmacokinetics informed through preclinical infection systems, and return those findings to the bedside. Moreover, this approach would allow prospective identification and validation of optimal shorter therapeutic durations with new regimens. Optimized treatment using available and repurposed drugs may have an increased impact when prioritizing a person-centered approach and acknowledge the importance of age, gender, comorbidities, and both social and programmatic environments. In this viewpoint article, we present an in-depth discussion on how TB pharmacology and the related strategies will contribute to TB elimination.


Asunto(s)
Investigación Operativa , Tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos , Estudios Prospectivos , Tuberculosis/tratamiento farmacológico , Tuberculosis/prevención & control
16.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32690646

RESUMEN

The combination of isoniazid, rifampin, and ethambutol is recommended by the American Thoracic Society (ATS) for treatment of pulmonary Mycobacterium kansasii, while the British Thoracic Society (BTS) recommends clarithromycin, rifampin and ethambutol. Unfortunately, therapy duration for both regimens lasts for years. In this study, we administered tedizolid, minocycline, clarithromycin, and rifapentine as monotherapy as well as novel combinations in the intracellular hollow-fiber model system of M. kansasii (HFS-Mkn) in a 28-day study. The ATS and BTS regimens were used as comparators. Repetitive sampling was used to validate the intended intrapulmonary pharmacokinetics of each drug and to monitor changes in M. kansasii burden. As monotherapy, tedizolid at an observed area under the concentration-time curve from 0 to 24 h (AUC0-24)/MIC of 5.85 and minocycline at an AUC0-24/MIC of 5.77 failed to kill the bacteria below day 0 (stasis), clarithromycin at an AUC0-24/MIC of 2.4 held the bacterial burden at stasis, but rifapentine at an AUC0-24/MIC of 140 killed 2 log10 CFU/ml below stasis. The BTS regimen kill slope was -0.083 ± 0.035 CFU/ml/day, which was significantly superior to the ATS regimen slope of -0.038 ± 0.038 CFU/ml/day. The rifapentine-tedizolid-minocycline combination kill slope was -0.119 ± 0.031 CFU/ml/day, superior to that of the ATS regimen and comparable to that of the BTS regimen. In conclusion, the BTS regimen and the novel rifapentine-tedizolid-minocycline regimen showed better kill of intracellular bacteria in the HFS-Mkn However, the efficacy of the new combination regimen remains to be tested in clinical settings.


Asunto(s)
Minociclina , Mycobacterium kansasii , Antibacterianos/uso terapéutico , Antituberculosos , Quimioterapia Combinada , Pruebas de Sensibilidad Microbiana , Oxazolidinonas , Rifampin/análogos & derivados , Tetrazoles
17.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32816738

RESUMEN

Cycloserine is a WHO group B drug for the treatment of multidrug-resistant tuberculosis (TB). Pharmacokinetic/pharmacodynamic data for cycloserine when dosed as terizidone are sparse. The aim of this analysis was to describe the population pharmacokinetics of cycloserine when administered as terizidone and predict the doses of terizidone attaining cycloserine exposures associated with efficacy. The plasma cycloserine level was measured 2 to 6 weeks after treatment initiation in patients hospitalized for second-line tuberculosis treatment. The pretreatment MICs of cycloserine were determined for the clinical isolates. We enrolled 132 participants with rifampicin-resistant TB; 79 were HIV positive. The median pretreatment MIC was 16 mg/liter. A one-compartment disposition model with two clearance pathways, nonrenal (0.35 liters/h) and renal (0.43 liters/h), described cycloserine pharmacokinetics well. Nonrenal clearance and the volume of distribution were allometrically scaled using fat-free mass. Smoking increased nonrenal clearance by 41%. Simulations showed that with daily doses of terizidone (750 mg and 1,000 mg for patients weighing ≤45 kg and >45 kg, respectively), the probability of maintaining the plasma cycloserine concentration above the MIC for more than 30% of the dosing interval (30% T>MIC) (which is associated with a 1.0-log10-CFU/ml kill in vitro) exceeded 90% at MIC values of ≤16 mg/liter, but the proportion of patients achieving 100% T>MIC (which is associated with the prevention of resistance) was more than 90% only at MICs of ≤8 mg/liter. Based on a target derived in vitro, the WHO-recommended doses of terizidone are effective for cycloserine MICs of ≤8 mg/liter, and higher doses are required to prevent the development of resistance.


Asunto(s)
Oxazolidinonas , Tuberculosis Resistente a Múltiples Medicamentos , Cicloserina , Humanos , Isoxazoles , Pruebas de Sensibilidad Microbiana , Método de Montecarlo , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
18.
Artículo en Inglés | MEDLINE | ID: mdl-33106263

RESUMEN

Pharmacokinetic (PK) and pharmacodynamic (PD) analyses were conducted to determine the cumulative fraction of response (CFR) for 100 mg twice-daily (BID) and 200 mg once-daily (QD) delamanid in patients with multidrug-resistant tuberculosis (MDR-TB), using a pharmacodynamic target (PDT) that achieves 80% of maximum efficacy. First, in the mouse model of chronic TB, the PK/PD index for delamanid efficacy was determined to be area under the drug concentration-time curve over 24 h divided by MIC (AUC0-24/MIC), with a PDT of 252. Second, in the hollow-fiber system model of tuberculosis, plasma-equivalent PDTs were identified as an AUC0-24/MIC of 195 in log-phase bacteria and 201 in pH 5.8 cultures. Third, delamanid plasma AUC0-24/MIC and sputum bacterial decline data from two early bactericidal activity trials identified a clinical PDT of AUC0-24/MIC of 171. Finally, the CFRs for the currently approved 100-mg BID dose were determined to be above 95% in two MDR-TB clinical trials. The CFR for the 200-mg QD dose, evaluated in a trial in which delamanid was administered as 100 mg BID for 8 weeks plus 200 mg QD for 18 weeks, was 89.3% based on the mouse PDT and >90% on the other PDTs. QTcF (QTc interval corrected for heart rate by Fridericia's formula) prolongation was approximately 50% lower for the 200 mg QD dose than the 100 mg BID dose. In conclusion, while CFRs of 100 mg BID and 200 mg QD delamanid were close to or above 90% in patients with MDR-TB, more-convenient once-daily dosing of delamanid is feasible and likely to have less effect on QTcF prolongation.


Asunto(s)
Mycobacterium tuberculosis , Nitroimidazoles , Tuberculosis Resistente a Múltiples Medicamentos , Animales , Antituberculosos/uso terapéutico , Humanos , Ratones , Nitroimidazoles/uso terapéutico , Oxazoles , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
19.
J Antimicrob Chemother ; 75(5): 1212-1217, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32016429

RESUMEN

BACKGROUND: The current treatment regimens recommended for Mycobacterium abscessus subspecies abscessus (Mab) pulmonary disease are not effective. We identified 16 drugs with potential to build new regimens, translating to 560 possible three-drug combination regimens. OBJECTIVES: To determine MICs and efficacy of drugs from different antibiotic classes for treatment against Mab, in order to winnow down the potential drugs for combination therapy to tractable numbers, for future use in hollow-fibre studies. METHODS: The MICs of levofloxacin, minocycline, meropenem, imipenem, tedizolid, bedaquiline, azithromycin, clarithromycin, amikacin, vancomycin, delafloxacin, tebipenem/avibactam and omadacycline were determined for 20 Mab isolates. In addition, concentration-response studies with tedizolid, bedaquiline, clarithromycin, amikacin, tebipenem/avibactam, cefdinir, faropenem, omadacycline and daunorubicin were performed and data were fitted to the inhibitory sigmoid Emax model. Efficacy was defined as maximal kill, expressed as cfu/mL kill below day 0 burden. RESULTS: The lowest MICs among the 13 antibiotics were of bedaquiline, tebipenem/avibactam and omadacycline. The antibiotics that killed Mab below the day 0 burden were the anticancer agent daunorubicin (3.36 log10 cfu/mL), cefdinir (1.85 log10 cfu/mL), faropenem (2.48 log10 cfu/mL) and tebipenem/avibactam (1.71 log10 cfu/mL kill). The EC50 values of these drugs were 11.67, 9.52, 48.2 and 0.33 mg/L, respectively, below peak concentrations of these drugs. CONCLUSIONS: The low MICs and efficacy at clinically achievable concentrations mean that tebipenem/avibactam, daunorubicin, omadacycline and bedaquiline give a view of components of a three-drug regimen likely to effectively kill Mab. We propose pharmacokinetic/pharmacodynamic studies to identify such a regimen and the doses to be combined.


Asunto(s)
Mycobacterium abscessus , Preparaciones Farmacéuticas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Reposicionamiento de Medicamentos , Pruebas de Sensibilidad Microbiana
20.
J Antimicrob Chemother ; 75(2): 392-399, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31713607

RESUMEN

OBJECTIVES: Animal models have suggested that the combination of pretomanid with pyrazinamide and moxifloxacin (PaMZ) may shorten TB therapy duration to 3-4 months. Here, we tested that in the hollow-fibre system model of TB (HFS-TB). METHODS: A series of HFS-TB experiments were performed to compare the kill rates of the PaMZ regimen with the standard three-drug combination therapy. HFS-TB experiments were performed with bacilli in log-phase growth treated for 28 days, intracellular bacilli treated daily for 28 days and semi-dormant Mycobacterium tuberculosis treated with daily therapy for 56 days for sterilizing effect. Next, time-to-extinction equations were employed, followed by morphism transformation and Latin hypercube sampling, to determine the proportion of patients who achieved a time to extinction of 3, 4 or 6 months with each regimen. RESULTS: Using linear regression, the HFS-TB sterilizing effect rates of the PaMZ regimen versus the standard-therapy regimen during the 56 days were 0.18 (95% credible interval=0.13-0.23) versus 0.15 (95% credible interval=0.08-0.21) log10 cfu/mL/day, compared with 0.16 (95% credible interval=0.13-0.18) versus 0.11 (95% credible interval=0.09-0.13) log10 cfu/mL/day in the Phase II clinical trial, respectively. Using time-to-extinction and Latin hypercube sampling modelling, the expected percentages of patients in which the PaMZ regimen would achieve sterilization were 40.37% (95% credible interval=39.1-41.34) and 72.30% (95% credible interval=71.41-73.17) at 3 and 4 months duration of therapy, respectively, versus 93.67% (95% credible interval=93.18-94.13) at 6 months for standard therapy. CONCLUSIONS: The kill rates of the PaMZ regimen were predicted to be insufficient to achieve cure in less than 6 months in most patients.


Asunto(s)
Moxifloxacino/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Nitroimidazoles/uso terapéutico , Pirazinamida/uso terapéutico , Tuberculosis/tratamiento farmacológico , Antituberculosos/uso terapéutico , Quimioterapia Combinada , Humanos , Matemática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA