Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 900
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2315696121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38640344

RESUMEN

Quantum amplification enables the enhancement of weak signals and is of great importance for precision measurements, such as biomedical science and tests of fundamental symmetries. Here, we observe a previously unexplored magnetic amplification using dark noble-gas nuclear spins in the absence of pump light. Such dark spins exhibit remarkable coherence lasting up to 6 min and the resilience against the perturbations caused by overlapping alkali-metal gas. We demonstrate that the observed phenomenon, referred to as "dark spin amplification," significantly magnifies magnetic field signals by at least three orders of magnitude. As an immediate application, we showcase an ultrasensitive magnetometer capable of measuring subfemtotesla fields in a single 500-s measurement. Our approach is generic and can be applied to a wide range of noble-gas isotopes, and we discuss promising optimizations that could further improve the current signal amplification up to [Formula: see text] with [Formula: see text]Ne, [Formula: see text] with [Formula: see text]Xe, and [Formula: see text] with [Formula: see text]He. This work unlocks opportunities in precision measurements, including searches for ultralight dark matter with sensitivity well beyond the supernova-observation constraints.

2.
Gastroenterology ; 166(1): 139-154, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37739089

RESUMEN

BACKGROUND & AIMS: The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. METHODS: By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFß/Activin-SMAD2/3 signaling pathway. RESULTS: Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. CONCLUSIONS: Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Proteínas que Contienen Bromodominio , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Gemcitabina , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína Smad2/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Am Chem Soc ; 146(2): 1522-1531, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166394

RESUMEN

The development of a reliable strategy for stereodivergent radical reactions that allows convenient access to all stereoisomers of homocoupling adducts with multiple stereogenic centers remains an unmet goal in organic synthesis. Herein, we describe a dual-catalyzed electrooxidative C(sp3)-H/C(sp3)-H homocoupling with complete absolute and relative stereocontrol for the synthesis of molecules with contiguous quaternary stereocenters in a general and predictable manner. The stereodivergent electrooxidative homocoupling reaction is achieved by synergistically utilizing two distinct chiral catalysts that convert identical racemic substrates into inherently distinctive reactive chiral intermediates, dictate enantioselective radical addition, and allow access to the full complement of stereoisomeric products via simple catalyst permutation. The successful execution of the dual-electrocatalytic strategy programmed via electrooxidative activation provides a significant conceptual advantage and will serve as a useful foundation for further research into cooperative stereocontrolled radical transformations and diversity-oriented synthesis.

4.
J Am Chem Soc ; 146(21): 14864-14874, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38754389

RESUMEN

The exploitation of carbon dioxide (CO2) as a sustainable, plentiful, and harmless C1 source for the catalytic synthesis of enantioenriched carboxylic acids has long been acknowledged as a pivotal task in synthetic chemistry. Herein, we present a current-driven nickel-catalyzed reductive carboxylation reaction with CO2 fixation, facilitating the formation of C(sp3)-C(sp2) bonds by circumventing the handling of moisture-sensitive organometallic reagents. This electroreductive protocol serves as a practical platform, paving the way for the synthesis of enantioenriched propargylic carboxylic acids (up to 98% enantiomeric excess) from racemic propargylic carbonates and CO2. The efficacy of this transformation is exemplified by its successful utilization in the asymmetric total synthesis of (S)-arundic acid, (R)-PIA, (S)-chizhine D, (S)-cochlearin G, and (S,S)-alexidine, thereby underscoring the potential of asymmetric electrosynthesis to achieve complex molecular architectures sustainably.

5.
J Am Chem Soc ; 146(27): 18407-18417, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38935530

RESUMEN

High-entropy alloy nanoparticles (HEA-NPs) show exceptional properties and great potential as a new generation of functional materials, yet a universal and facile synthetic strategy in air toward nonoxidized and precisely controlled composition remains a huge challenge. Here we provide a laser scribing method to prepare single-phase solid solution HEA-NPs libraries in air with tunable composition at the atomic level, taking advantage of the laser-induced metastable thermodynamics and substrate-assisted confinement effect. The three-dimensional porous graphene substrate functions as a microreactor during the fast heating/cooling process, which is conductive to the generation of the pure alloy phase by effectively blocking the binding of oxygen and metals, but is also beneficial for realizing accurate composition control via microstructure confinement-endowed favorable vapor pressure. Furthermore, by combining an active learning approach based on an adaptive design strategy, we discover an optimal composition of quinary HEA-NP catalysts with an ultralow overpotential for Li-CO2 batteries. This method provides a simple, fast, and universal in-air route toward the controllable synthesis of HEA-NPs, potentially integrated with machine learning to accelerate the research on HEAs.

6.
Eur J Immunol ; 53(10): e2350437, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37438976

RESUMEN

Toll-like receptor 7 (TLR7) triggers antiviral immune responses through its capacity to recognize single-stranded RNA. TLR7 loss-of-function mutants are associated with life-threatening pneumonia in severe COVID-19 patients. Whereas TLR7-driven innate induction of type I IFN appears central to control SARS-CoV2 virus spreading during the first days of infection, the impact of TLR7-deficiency on adaptive B-cell immunity is less clear. In the present study, we examined the role of TLR7 in the adaptive B cells response to various pathogen-like antigens (PLAs). We used inactivated SARS-CoV2 and a PLA-based COVID-19 vaccine candidate designed to mimic SARS-CoV2 with encapsulated bacterial ssRNA as TLR7 ligands and conjugated with the RBD of the SARS-CoV2 Spike protein. Upon repeated immunization with inactivated SARS-CoV2 or PLA COVID-19 vaccine, we show that Tlr7-deficiency abolished the germinal center (GC)-dependent production of RBD-specific class-switched IgG2b and IgG2c, and neutralizing antibodies to SARS-CoV2. We also provide evidence for a non-redundant role for B-cell-intrinsic TLR7 in the promotion of RBD-specific IgG2b/IgG2c and memory B cells. Together, these data demonstrate that the GC reaction and class-switch recombination to the Myd88-dependent IgG2b/IgG2c in response to SARS-CoV2 or PLAs is strictly dependent on cell-intrinsic activation of TLR7 in B cells.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19 , Anticuerpos Neutralizantes/metabolismo , Receptor Toll-Like 7 , ARN Viral , Inmunoglobulina G , Poliésteres , Anticuerpos Antivirales
7.
J Phys Chem A ; 128(28): 5435-5444, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38953499

RESUMEN

Using the quasi-classical trajectory method, we systematically studied the state-to-state vibrational relaxation process of N2(v1) + N2(v2) collisions over a wide temperature range (5000-30,000 K). Different temperature dependencies of the single- and multiquantum VV and VT events in various (v1,v2) collisions are captured, with the dominant channel being related to the initial vibrational energy levels (vmax = 50). At a specified relative translational energy, there is a monotonic relationship of the VT cross sections with the vibrational energy level, particularly in high-energy collisions. Additionally, we constructed well-trained neural network models (R-values reaching 0.99) using limited quasi-classical trajectory (QCT) data sets, which can be used to predict the state-to-state cross sections and rate coefficients of the VV processes N2(v1) + N2(v2) → N2(v1 - Δv) + N2(v2 + Δv) and VT processes N2(v1) + N2(v2) → N2(v1 - Δv) + N2(v2) (Δv = ±1, ±2, ±3) for collisions with arbitrary initial vibrational states. This work not only significantly reduces computational resources but also serves as a reference for the study of the state-to-state dynamics of all four-atom collision systems in hypersonic flows.

8.
BMC Cardiovasc Disord ; 24(1): 236, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705985

RESUMEN

BACKGROUND: This study was designed to investigate the mechanism by which miR-30a-5p mediates cardiomyocyte apoptosis after acute myocardial infarction (AMI) induced by hypoxia/reoxygenation (H/R). METHODS: Differentially expressed miRNAs were analyzed by RNA high-throughput sequencing in acute myocardial infarction (ST-elevation myocardial infarction) patients versus healthy individuals (controls). The H/R model was used to assess the regulatory mechanism of miRNAs in AMI. Lentivirus-associated vectors were used to overexpress or knock down miR-30a-5p in cellular models. The pathological mechanisms of miR-30a-5p regulating the development of acute myocardial infarction were serially explored by qPCR, bioinformatics, target gene prediction, dual luciferase, enzyme-linked immunosorbent assays (ELISAs) and Western blotting. RESULTS: The results showed that the expression of miR-30a-5p was significantly increased in AMI patients and H9C2 cells. Hypoxia decreased cardiomyocyte survival over time, and reoxygenation further reduced cell survival. Bax and Phosphatase and tensin homolog (PTEN)were suppressed, while Bcl-2 was upregulated. Additionally, miR-30a-5p specifically targeted the PTEN gene. According to the GO and KEGG analyses, miR-30a-5p may participate in apoptosis by interacting with PTEN. The miR-30a-5p mimic decreased the expression of apoptosis-related proteins and the levels of the proinflammatory markers IL-1ß, IL-6, and TNF-α by activating the PTEN/PI3K/Akt signaling pathway. Conversely, anti-miR-30a-5p treatment attenuated these effects. Additionally, silencing PTEN and anti-miR-30a-5p had opposite effects on H/R-induced cell apoptosis. CONCLUSIONS: miR-30a-5p plays a crucial role in cardiomyocyte apoptosis after hypoxia-induced acute myocardial infarction. Our findings provide translational evidence that miR-30a-5p is a novel potential therapeutic target for AMI.


Asunto(s)
Apoptosis , Hipoxia de la Célula , MicroARNs , Miocitos Cardíacos , Fosfohidrolasa PTEN , Transducción de Señal , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Estudios de Casos y Controles , Línea Celular , Regulación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/enzimología , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/enzimología , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética
9.
Dig Dis Sci ; 69(5): 1755-1761, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483780

RESUMEN

OBJECTIVE: To investigate the safety and prognosis of enbloc or piecemeal removal after enbloc resection of a gastric GIST by comparing the clinical data of endoscopic en block resection and piecemeal removal (EP) and en block resection and complete removal (EC) of gastric GISTs. METHODS: A total of 111 (43 endoscopic piecemeal, and 68 complete removal) patients with gastric GIST's ≥ 2 cm in diameter who underwent endoscopic therapy from January 2016 to June 2020 at the First Affiliated Hospital of Zhengzhou University were retrospectively analyzed. In all cases, it was ensured that the tumor was intact during the resection, however, it was divided into EP group and EC group based on whether the tumor was completely removed or was cut into pieces which were then removed. The patients' recurrence-free survival rate and recurrence-free survival (RFS) were recorded. RESULTS: There was no statistically significant difference in RFS rates between the two groups (P = 0.197). The EP group had relatively high patient age, tumor diameter, risk classification, and operation time. However, there was no statistically significant difference in the number of nuclear fission images, postoperative hospitalization time, postoperative fasting time, complication rate and complication grading between the two groups (P > 0.05). CONCLUSION: Endoscopic piecemeal removal after en block resection of gastric GIST is safe and effective and achieves similar clinical outcomes as complete removal after en block resection.


Asunto(s)
Tumores del Estroma Gastrointestinal , Humanos , Tumores del Estroma Gastrointestinal/cirugía , Tumores del Estroma Gastrointestinal/patología , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/patología , Adulto , Resultado del Tratamiento , Gastroscopía/métodos
10.
Sensors (Basel) ; 24(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39001043

RESUMEN

The properties of nanopipettes largely rely on the materials introduced onto their inner walls, which allow for a vast extension of their sensing capabilities. The challenge of simultaneously enhancing the sensitivity and selectivity of nanopipettes for pH sensing remains, hindering their practical applications. Herein, we report insulin-modified nanopipettes with excellent pH response performances, which were prepared by introducing insulin onto their inner walls via a two-step reaction involving silanization and amidation. The pH response intensity based on ion current rectification was significantly enhanced by approximately 4.29 times when utilizing insulin-modified nanopipettes compared with bare ones, demonstrating a linear response within the pH range of 2.50 to 7.80. In addition, insulin-modified nanopipettes featured good reversibility and selectivity. The modification processes were monitored using the I-V curves, and the relevant mechanisms were discussed. The effects of solution pH and insulin concentration on the modification results were investigated to achieve optimal insulin introduction. This study showed that the pH response behavior of nanopipettes can be greatly improved by introducing versatile molecules onto the inner walls, thereby contributing to the development and utilization of pH-responsive nanopipettes.


Asunto(s)
Insulina , Concentración de Iones de Hidrógeno , Insulina/química , Técnicas Biosensibles/métodos , Iones/química
11.
Compr Rev Food Sci Food Saf ; 23(4): e13390, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031881

RESUMEN

Naturally sourced pH-sensitive indicator films are of interest for real-time monitoring of food freshness through color changes because of their safety. Therefore, natural pigments for indicator films are required. However, pigment stability is affected by environmental factors, which can in turn affect the sensitivity and color stability of the pH-sensitive indicator film. First, natural pigments (anthocyanin, betalain, curcumin, alizarin, and shikonin) commonly used in pH-sensitive indicator films are presented. Subsequently, the mechanisms behind the change in pigment color under different pH environments and their applications in monitoring food freshness are also described. Third, influence factors, such as the sources, types, and pH sensitivity of pigments, as well as environmental parameters (light, temperature, humidity, and oxygen) of sensitivity and color stability, are analyzed. Finally, methods for improving the pH-sensitive indicator film are explored, encapsulation of natural pigments, incorporation of a hydrophobic film-forming matrix or function material, and protective layer have been shown to enhance the color stability of indicator films, the addition of copigments or mental ions, blending of different natural pigments, and the utilization of electrospinning have been proved to increase the color sensitivity of indicator films. This review could provide theoretical support for the development of naturally sourced pH-sensitive indicator films with high stability and sensitivity and facilitate the development in the field of monitoring food freshness.


Asunto(s)
Color , Embalaje de Alimentos , Concentración de Iones de Hidrógeno , Embalaje de Alimentos/métodos , Pigmentos Biológicos/química
12.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 158-163, 2024 Feb 15.
Artículo en Zh | MEDLINE | ID: mdl-38436313

RESUMEN

OBJECTIVES: To investigate the value of the human chorionic gonadotropin (hCG) stimulation test in the diagnosis of disorder of sexual development (DSD) in children. METHODS: A retrospective analysis was conducted on 132 children with DSD. According to the karyotype, they were divided into three groups: 46,XX group (n=10), 46,XY group (n=87), and sex chromosome abnormality group (n=35). The above groups were compared in terms of sex hormone levels before and after hCG stimulation test, and the morphological manifestation of the impact of testicular tissue on the results of the hCG stimulation test was analyzed. RESULTS: There was no significant difference in the multiple increase of testosterone after stimulation among the three groups (P>0.05). In the 46,XY group, the children with 5α-reductase type 2 deficiency had a testosterone-to-dihydrotestosterone ratio higher than that of the 46,XY DSD children with other causes. Morphological analysis showed that DSD children with testicular tissue demonstrated a significantly higher multiple increase in testosterone after stimulation compared to children without testicular tissue (P<0.05). CONCLUSIONS: The hCG stimulation test has an important value in assessing the presence and function of testicular interstitial cells in children with different types of DSD, and it is recommended to perform the hCG stimulation test for DSD children with unclear gonadal type.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/deficiencia , Trastorno del Desarrollo Sexual 46,XY , Hipospadias , Desarrollo Sexual , Errores Congénitos del Metabolismo Esteroideo , Testosterona , Niño , Humanos , Estudios Retrospectivos , Gonadotropina Coriónica
13.
J Biol Chem ; 298(6): 102002, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35504351

RESUMEN

P2X receptors are a class of nonselective cation channels widely distributed in the immune and nervous systems, and their dysfunction is a significant cause of tumors, inflammation, leukemia, and immune diseases. P2X7 is a unique member of the P2X receptor family with many properties that differ from other subtypes in terms of primary sequence, the architecture of N- and C-terminals, and channel function. Here, we suggest that the observed lengthened ß2- and ß3-sheets and their linker (loop ß2,3), encoded by redundant sequences, play an indispensable role in the activation of the P2X7 receptor. We show that deletion of this longer structural element leads to the loss of P2X7 function. Furthermore, by combining mutagenesis, chimera construction, surface expression, and protein stability analysis, we found that the deletion of the longer ß2,3-loop affects P2X7 surface expression but, more importantly, that this loop affects channel gating of P2X7. We propose that the longer ß2,3-sheets may have a negative regulatory effect on a loop on the head domain and on the structural element formed by E171 and its surrounding regions. Understanding the role of the unique structure of the P2X7 receptor in the gating process will aid in the development of selective drugs targeting this subtype.


Asunto(s)
Adenosina Trifosfato , Conformación Proteica en Lámina beta , Receptores Purinérgicos P2X7 , Adenosina Trifosfato/metabolismo , Humanos , Inflamación , Conformación Proteica en Lámina beta/genética , Estabilidad Proteica , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Activación Transcripcional
14.
Circulation ; 145(22): 1663-1683, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35400201

RESUMEN

BACKGROUND: Transcriptional reconfiguration is central to heart failure, the most common cause of which is dilated cardiomyopathy (DCM). The effect of 3-dimensional chromatin topology on transcriptional dysregulation and pathogenesis in human DCM remains elusive. METHODS: We generated a compendium of 3-dimensional epigenome and transcriptome maps from 101 biobanked human DCM and nonfailing heart tissues through highly integrative chromatin immunoprecipitation (H3K27ac [acetylation of lysine 27 on histone H3]), in situ high-throughput chromosome conformation capture, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin using sequencing, and RNA sequencing. We used human induced pluripotent stem cell-derived cardiomyocytes and mouse models to interrogate the key transcription factor implicated in 3-dimensional chromatin organization and transcriptional regulation in DCM pathogenesis. RESULTS: We discovered that the active regulatory elements (H3K27ac peaks) and their connectome (H3K27ac loops) were extensively reprogrammed in DCM hearts and contributed to transcriptional dysregulation implicated in DCM development. For example, we identified that nontranscribing NPPA-AS1 (natriuretic peptide A antisense RNA 1) promoter functions as an enhancer and physically interacts with the NPPA (natriuretic peptide A) and NPPB (natriuretic peptide B) promoters, leading to the cotranscription of NPPA and NPPB in DCM hearts. We revealed that DCM-enriched H3K27ac loops largely resided in conserved high-order chromatin architectures (compartments, topologically associating domains) and their anchors unexpectedly had equivalent chromatin accessibility. We discovered that the DCM-enriched H3K27ac loop anchors exhibited a strong enrichment for HAND1 (heart and neural crest derivatives expressed 1), a key transcription factor involved in early cardiogenesis. In line with this, its protein expression was upregulated in human DCM and mouse failing hearts. To further validate whether HAND1 is a causal driver for the reprogramming of enhancer-promoter connectome in DCM hearts, we performed comprehensive 3-dimensional epigenome mappings in human induced pluripotent stem cell-derived cardiomyocytes. We found that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced a distinct gain of enhancer-promoter connectivity and correspondingly increased the expression of their connected genes implicated in DCM pathogenesis, thus recapitulating the transcriptional signature in human DCM hearts. Electrophysiology analysis demonstrated that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced abnormal calcium handling. Furthermore, cardiomyocyte-specific overexpression of Hand1 in the mouse hearts resulted in dilated cardiac remodeling with impaired contractility/Ca2+ handling in cardiomyocytes, increased ratio of heart weight/body weight, and compromised cardiac function, which were ascribed to recapitulation of transcriptional reprogramming in DCM. CONCLUSIONS: This study provided novel chromatin topology insights into DCM pathogenesis and illustrated a model whereby a single transcription factor (HAND1) reprograms the genome-wide enhancer-promoter connectome to drive DCM pathogenesis.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Animales , Cardiomiopatía Dilatada/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Factores de Transcripción/genética
15.
J Am Chem Soc ; 145(51): 28085-28095, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38032206

RESUMEN

The creation of full stereoisomers of an organic compound comprising multiple contiguous stereocenters with simultaneous control over both relative and absolute configurations remains a significant challenge in synthetic chemistry. Using a cooperative catalysis strategy, we established an N-heterocyclic carbene/nickel-catalyzed enantio- and diastereodivergent propargylation reaction to access 3,3'-disubstituted oxindoles, enabling the incorporation of internal alkyne functionality and the introduction of a single quaternary or vicinal quaternary/tertiary stereogenic center. By selecting the appropriate combination of catalyst chirality, all four potential stereoisomers of α-quaternary propargylated oxindoles were synthesized in a predictable and precise way with remarkable yields, diastereoselectivities, and enantioselectivities from identical starting materials. The synthetic utility of this method was demonstrated in the concise asymmetric total synthesis of (-)-debromoflustramine B and (-)-C(ß-Me)-debromoflustramine B.

16.
J Transl Med ; 21(1): 883, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057866

RESUMEN

BACKGROUND: Sepsis-caused multi-organ failure remains the major cause of morbidity and mortality in intensive care units with limited therapeutics. Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD+), has been recently reported to be protective in sepsis; however, its therapeutic effects remain to be determined. This study sought to investigate the therapeutic effects of NMN in septic organ failure and its underlying mechanisms. METHODS: Sepsis was induced by feces-injection-in-peritoneum in mice. NMN was given after an hour of sepsis onset. Cultured neutrophils, macrophages and endothelial cells were incubated with various agents. RESULTS: We demonstrate that administration of NMN elevated NAD+ levels and reduced serum lactate levels, oxidative stress, inflammation, and caspase-3 activity in multiple organs of septic mice, which correlated with the attenuation of heart dysfunction, pulmonary microvascular permeability, liver injury, and kidney dysfunction, leading to lower mortality. The therapeutic effects of NMN were associated with lower bacterial burden in blood, and less ROS production in septic mice. NMN improved bacterial phagocytosis and bactericidal activity of macrophages and neutrophils while reducing the lipopolysaccharides-induced inflammatory response of macrophages. In cultured endothelial cells, NMN mitigated mitochondrial dysfunction, inflammation, apoptosis, and barrier dysfunction induced by septic conditions, all of which were offset by SIRT3 inhibition. CONCLUSION: NAD+ repletion with NMN prevents mitochondrial dysfunction and restrains bacterial dissemination while limiting inflammatory damage through SIRT3 signaling in sepsis. Thus, NMN may represent a therapeutic option for sepsis.


Asunto(s)
Enfermedades Mitocondriales , Sepsis , Sirtuina 3 , Ratones , Animales , NAD , Mononucleótido de Nicotinamida/farmacología , Mononucleótido de Nicotinamida/uso terapéutico , Células Endoteliales , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
17.
Langmuir ; 39(51): 19048-19055, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096548

RESUMEN

Alectinib is an ALK tyrosine kinase inhibitor, which is mainly used in patients with crizotinib-resistant nonsmall cell lung cancer. Alectinib has attracted much clinical attention for its longest progression-free survival time and the best therapeutic effect. The chemical adsorption of Au nanoclusters (AuNPs) with alectinib molecules is studied by density functional theory (DFT) and surface-enhanced Raman scattering spectroscopy (SERS) experiments. DFT/B3LYP-D3/6-311G** was used for optimization and vibration analysis of alectinib-Au6 complexes, as well as molecular electrostatic potential, frontier molecular orbital, and electro-optic-based charge transfer descriptors. Comparing the results of the DFT theory and SERS experiment, alectinib and AuNPs can form Au-N6 bonds primarily through chemical adsorption of N6 atoms, and the experimental results showed that the enhancement factor (EFCHEM) could reach 4.27. The results provide a theoretical basis for exploring the mechanism of chemical enhancement between AuNPs and alectinib.

18.
Langmuir ; 39(39): 13968-13975, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37734007

RESUMEN

Cyromazine, when used as an insect growth regulator and low-toxicity insecticide, may degrade into melamine and pose a potential threat to the environment and soil health, which has thus attracted extensive research on eliminating such a harmful effect. In this paper, density functional theory (DFT)/LC-BLYP/6-311G(d,p) is used to optimize the geometric structure and analyze the vibration of cyromazine. The DFT/LC-BLYP/def2-SVP is used for the cyromazine-Au complex optimization and vibration analysis. The molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs), vibration frequency, electrophilicity-based charge transfer (ECT) descriptor, binding energy (BE), polarizability, normal Raman spectroscopy (NRS), and surface-enhanced Raman spectroscopy (SERS) of cyromazine adsorbing on Au6 and Au20 are calculated. The study of the chemical enhancement mechanism of SERS of cyromazine at different adsorption sites of Au6 or Au20 confirms the existence of a charge transfer between cyclopromazine and Au6 and Au20, which can adsorb and form stable cyromazine-Au complexes. The results show that N2, H13, and N4 are the adsorption sites of Au6 and Au20. The Raman spectra of the cyromazine-Au complex can be selectively enhanced with a factor up to 9.07. Compared with those of cyromazine-Au6, the Raman spectra of cyromazine-Au20 are enhanced more significantly.

19.
Liver Int ; 43(5): 1021-1034, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36912786

RESUMEN

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH), a more severe subtype of nonalcoholic fatty liver disease, can cause cirrhosis and hepatocellular carcinoma. Macrophages play critical roles in initiating and maintaining NASH-induced liver inflammation and fibrosis. However, the underlying molecular mechanism of macrophage chaperone-mediated autophagy (CMA) in NASH remains unclear. We aimed to investigate the effects of macrophage-specific CMA on liver inflammation and identify a potential therapeutic target for NASH treatment. METHODS: The CMA function of liver macrophages was detected using Western blot, quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and flow cytometry. By constructing myeloid-specific CMA deficiency mice, we evaluated the effects of deficient CMA of macrophages on monocyte recruitment, liver injury, steatosis and fibrosis in NASH mice. A label-free mass spectrometry was utilized to screen the substrates of CMA in macrophages and their mutual interactions. The association between CMA and its substrate was further examined by immunoprecipitation, Western blot and RT-qPCR. RESULTS: A typical hallmark in murine NASH models was impaired CMA function in hepatic macrophages. Monocyte-derived macrophages (MDM) were the dominant macrophage population in NASH, and CMA function was impaired in MDM. CMA dysfunction aggravated liver-targeted recruitment of monocyte and promoted steatosis and fibrosis. Mechanistically, Nup85 functions as a substrate for CMA and its degradation was inhibited in CMA-deficient macrophages. Inhibition of Nup85 attenuated the steatosis and monocyte recruitment caused by CMA deficiency in NASH mice. CONCLUSIONS: We proposed that the impaired CMA-induced Nup85 degradation aggravated monocyte recruitment, promoting liver inflammation and disease progression of NASH.


Asunto(s)
Autofagia Mediada por Chaperones , Enfermedad del Hígado Graso no Alcohólico , Proteínas de Complejo Poro Nuclear , Animales , Ratones , Modelos Animales de Enfermedad , Fibrosis , Inflamación/patología , Hígado/patología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas de Complejo Poro Nuclear/metabolismo
20.
Phys Chem Chem Phys ; 25(43): 29475-29485, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37888773

RESUMEN

The collision-induced dissociation reaction of O2 (v, j) + N, a fundamental process in nonequilibrium air flows around reentry vehicles, has been studied systematically by applying molecular dynamics simulations on the 2A', 4A' and 6A' potential energy surfaces of NO2 in a wide temperature range. In particular, we have directly investigated the role of the 6A' surface in this process and discussed the applicability of the simplified approximate rate models proposed by Esposito et al. and Andrienko et al. based on the lowest two surfaces. The present work indicates that the state-selected dissociation of O2 + N is dominated by the 6A' surface for all except for the low-lying O2 states. Furthermore, a complete database of rovibrationally detailed cross sections and rate coefficients is a prerequisite for modeling the relevant nonequilibrium air flows in spacecraft reentry. Here, the combination of the quasi-classical trajectory (QCT) and the neural network (NN) has been proposed to predict all state-selected dissociation cross sections and further construct dissociation parameter sets. All NN-based models established in this work accurately reproduce the results calculated from QCT simulations over a wide range of rovibrational quantum numbers with R2 > 0.99. Compared with the explicit QCT simulations, the computational requirement for predicting cross sections and rates based on the NN models significantly reduces. Finally, thermal equilibrium rate coefficients computed from NN models match remarkably well the available theoretical and experimental results in the whole temperature range explored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA