Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 413(13): 3493-3499, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33770206

RESUMEN

In the process of drug carrier design, lysosome degradation in cells is often neglected, which makes a considerable number of drugs not play a role. Here, we have constructed a tumor treatment platform (Apn/siRNA/NLS/HA/Apt) with unique lysosomal escape function and excellent cancer treatment effect. Apoferritin (Apn) has attracted more and more attention because of its high uniformity, modifiability, and controllability. Meanwhile, its endogenous nature can avoid the risk of immune response being eliminated. We used aptamer modified iron deficient protein nanocages (Apn) to tightly encapsulate the combination of siRNA and NLS (siRNA/NLS) with influenza virus hemagglutinin (HA peptide). After Apn/siRNA/NLS/HA/Apt was targeted into cells, the acidic environment of lysosome led to the cleavage of Apn nanocages, and the release of siRNA/NLS and HA peptide. HA peptide can destroy lysosome membrane, make siRNA/NLS escape lysosome, and enter the nucleus under the action of NLS, resulting in efficient gene silencing effect. This kind of cancer treatment strategy based on Apn nanocage shows high biocompatibility and unique lysosome escape property, which significantly improves the drug delivery and treatment efficiency. Lysosomal escape protein nanocarriers for nuclear-targeted siRNA delivery.


Asunto(s)
Núcleo Celular/metabolismo , Portadores de Fármacos , Lisosomas/metabolismo , Proteínas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación
2.
RSC Adv ; 12(33): 21103-21109, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35975045

RESUMEN

Organosulfates (OSs), also known as organic sulfate esters, are ubiquitous in atmospheric particles and used as secondary organic aerosol (SOA) markers. However, the chemical transformation mechanism of these OSs remains unclear. Therefore, we investigated the heterogeneous OH oxidation of 3-methyltetraol sulfate (3-MTS), which is one of the most abundant particulate organosulfates, by using quantum chemical and kinetic calculations. 3-MTS can easily undergo abstraction reaction with OH radicals, and the reaction rate constant is about 7.87 × 10-12 cm3 per molecule per s. The generated HCOOH, CH3COOH, HCHO, CH3CHO and 2-methyl-2,3-dihydroxypropionic acid are low-volatility species with increased water solubility, which are the main components of SOA. In addition, the OH radicals obtained from the reaction can continue to promote the oxidation reaction. The results of this study provide insights into the heterogeneous OH reactivity of other organosulfates in atmospheric aerosols, and it also provides a new understanding of the conversion of sulfur (S) between its organic and inorganic forms during the heterogeneous OH oxidation of organic sulfates.

3.
Nanomaterials (Basel) ; 11(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34578672

RESUMEN

Lead ion (Pb2+) has high toxicity and brings great harm to human body. It is very important to find an effective method to address lead ion pollution. In this work, amino functionalized CoFe2O4/SBA-15 nanocomposite (NH2-CoFe2O4/SBA-15) was prepared for the effective removal of Pb2+ from aqueous solution. The prepared NH2-CoFe2O4/SBA-15 adsorbent was manifested by using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectrum (FTIR), X-ray powder diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. In the meantime, the adsorption conditions, including pH, adsorbent dosage, and adsorption time, were studied. The investigation of adsorption kinetics revealed that the adsorption results conform to the pseudo-first-order kinetic model. The adsorption isotherms research displayed that the adsorption was consistent with the Freundlich model, demonstrating that the adsorption for Pb2+ with the prepared adsorbent was a multimolecular layer adsorption process. In addition, the thermodynamic investigations (ΔG < 0, ΔH > 0, ΔS > 0) demonstrated that the adsorption for Pb2+ with the prepared adsorbent was endothermic and spontaneous. Moreover, the prepared adsorbent showed superior anti-interference performance and reusability, implying the potential application of the adsorbent in actual water treatment. Furthermore, this research may provide a reference and basis for the study of other heavy metal ions.

4.
RSC Adv ; 11(47): 29590-29597, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35479524

RESUMEN

High-performance electrode modification materials play a crucial role in improving the sensitivity of sensor detection in electrochemical determination of heavy metals. In this study, a rGO/MoS2/CS nanocomposite modified glassy carbon electrode (GCE) was used to construct a sensitive sensor for detecting lead ions in tobacco leaves. The reduced graphene oxide (rGO) was used to increase the conductivity of the sensor, and the nano-flowered MoS2 could provide a large reaction specific surface area and a certain active site for heavy metal reaction. Chitosan (CS) was used to improve the enrichment ability of heavy metals and increase the electrocatalytic activity of electrode. Thus, an electrochemical sensor with excellent performance in reproducibility, stability and anti-interference ability was established. The stripping behavior of Pb(ii) and the application conditions of the sensor were studied by square wave anodic stripping voltammetry (SWASV). The investigation indicated that the sensor exhibited high detection sensitivity in the range of 0.005-0.05-2.0 µM, and the limit of detection (LOD) was 0.0016 µM. This work can provide a fast and effective method for determination of Pb(ii) in samples with low content, such as tobacco leaves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA