Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Hepatol ; 73(6): 1482-1495, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32738448

RESUMEN

BACKGROUND & AIMS: Chronic overconsumption of a high-carbohydrate diet leads to steatosis and its associated metabolic disorder and, eventually, to non-alcoholic fatty liver disease. Carbohydrate-responsive element binding protein (ChREBP) and insulin regulate de novo lipogenesis from glucose. Herein, we studied the effect of reticulon-4 (Nogo) expression on diet-induced metabolic disorders in mice. METHODS: Nogo-deficient (Nogo-/-) and littermate control [wild-type (WT)] mice were fed a high-glucose or high-fructose diet (HGD/HFrD) to induce metabolic disorders. The effects of Nogo small interfering (si) RNA (siRNA) on HFrD-induced metabolic disorders were investigated in C57BL/6J mice. RESULTS: HGD/HFrD induced steatosis and its associated metabolic disorders in WT mice by activating ChREBP and impairing insulin sensitivity. They also activated Nogo-B expression, which in turn inhibited insulin activity. In response to HGD/HFrD feeding, Nogo deficiency enhanced insulin sensitivity and energy metabolism to reduce the expression of ChREBP and lipogenic molecules, activated AMP-activated catalytic subunit α, peroxisome proliferator activated receptor α and fibroblast growth factor 21, and reduced endoplasmic reticulum (ER) stress and inflammation, thereby blocking HGD/HFrD-induced hepatic lipid accumulation, insulin resistance and other metabolic disorders. Injection of Nogo siRNA protected C57BL/6J mice against HFrD-induced metabolic disorders by ameliorating insulin sensitivity, ChREBP activity, ER stress and inflammation. CONCLUSIONS: Our study identified Nogo as an important mediator of insulin sensitivity and ChREBP activity. Reduction of Nogo expression is a potential strategy for the treatment of high-carbohydrate diet-induced metabolic complications. LAY SUMMARY: Nogo deficiency blocks high-carbohydrate diet-induced glucose intolerance and insulin resistance, while increasing glucose/lipid utilisation and energy expenditure. Thus, reduction of Nogo expression protects against high-carbohydrate diet-induced body-weight gain, hepatic lipid accumulation and the associated metabolic disorders, indicating that approaches inhibiting Nogo expression can be applied for the treatment of diseases associated with metabolic disorders.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carbohidratos de la Dieta/metabolismo , Intolerancia a la Glucosa/metabolismo , Proteínas Nogo/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Descubrimiento de Drogas , Metabolismo Energético , Insulina/metabolismo , Resistencia a la Insulina , Lipogénesis/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Nogo/deficiencia , ARN Interferente Pequeño/metabolismo
2.
Cell Signal ; 65: 109429, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31654717

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a fast-growing chronic liver disease worldwide which can lead to liver cirrhosis. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor, plays an important role in lipogenesis. Increased Nogo-B expression can be determined in the liver of cirrhosis patients. However, the effect of PPARγ activation on hepatic Nogo-B expression remains unknown. In this study, we found PPARγ activation by rosiglitazone or dephosphorylation increased Nogo-B expression at mRNA and protein levels in HepG2 cells and mouse primary hepatocytes. Furthermore, we identified a PPARγ response element (PPRE) in Nogo-B promoter and found PPARγ enhanced Nogo-B transcription in a PPRE-dependent manner. ChIP assay further confirms rosiglitazone enhanced the binding of PPARγ to Nogo-B promoter. Using a liver specific PPARγ deficient mice, we determined the critical role of PPARγ expression in regulating hepatic Nogo-B expression. Increased glucose and palmitate in culture medium activated Nogo-B and PPARγ expression in mouse primary hepatocytes, and corresponding, high-fat diet (HFD) induced fatty liver associated with increased hepatic Nogo-B and PPARγ expression in mice. Similarly, serum Nogo-B levels in patients with NAFLD were increased. However, rosiglitazone treatment reduced HFD-induced fatty liver and Nogo-B expression. In summary, our study identifies Nogo-B as a new molecular target of PPARγ, and suggests increased Nogo-B might be a potential indicator for NAFLD.


Asunto(s)
Proteínas Nogo/metabolismo , PPAR gamma/metabolismo , Animales , Secuencia de Bases , Colesterol/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Ligandos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosforilación , Regiones Promotoras Genéticas/genética , Estabilidad Proteica , Elementos de Respuesta/genética , Rosiglitazona/farmacología , Transcripción Genética
3.
Br J Pharmacol ; 177(5): 1041-1060, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31658492

RESUMEN

BACKGROUND AND PURPOSE: Intrahepatic cholestasis is mainly caused by dysfunction of bile secretion and has limited effective treatment. Rosiglitazone is a synthetic agonist of PPARγ, whose endogenous agonist is 15-deoxy-Δ12,14 -PGJ2 (15d-PGJ2 ). Reticulon 4B (Nogo-B) is the detectable Nogo protein family member in the liver and secreted into circulation. Here, we determined if rosiglitazone can alleviate intrahepatic cholestasis in mice. EXPERIMENTAL APPROACH: Wild-type, hepatocyte-specific PPARγ or Nogo-B knockout mice received intragastric administration of α-naphthylisothiocyanate (ANIT) and/or rosiglitazone, followed by determination of intrahepatic cholestasis and the involved mechanisms. Serum samples from primary biliary cholangitis (PBC) patients and non-PBC controls were analysed for cholestasis-related parameters. KEY RESULTS: Rosiglitazone prevented wild type, but not hepatocyte-specific PPARγ deficient mice from developing ANIT-induced intrahepatic cholestasis by increasing expression of bile homeostatic proteins, reducing hepatic necrosis, and correcting abnormal serum parameters and enterohepatic circulation of bile. Nogo-B knockout provided protection similar to that of rosiglitazone treatment. ANIT-induced intrahepatic cholestasis decreased 15d-PGJ2 but increased Nogo-B in serum, and both were corrected by rosiglitazone. Nogo-B deficiency in the liver increased 15d-PGJ2 production, thereby activating expression of PPARγ and bile homeostatic proteins. Rosiglitazone and Nogo-B deficiency also alleviated cholestasis-associated dyslipidemia. In addition, rosiglitazone reduced symptoms of established intrahepatic cholestasis in mice. In serum from PBC patients, the decreased 15d-PGJ2 and increased Nogo-B levels were significantly correlated with classical cholestatic markers. CONCLUSIONS AND IMPLICATIONS: Levels of 15d-PGJ2 and Nogo are important biomarkers for intrahepatic cholestasis. Synthetic agonists of PPARγ could be used for treatment of intrahepatic cholestasis and cholestasis-associated dyslipidemia.


Asunto(s)
1-Naftilisotiocianato , Colestasis Intrahepática , 1-Naftilisotiocianato/toxicidad , Animales , Colestasis Intrahepática/inducido químicamente , Colestasis Intrahepática/tratamiento farmacológico , Humanos , Ratones , PPAR gamma , Prostaglandina D2 , Rosiglitazona
4.
ACS Appl Mater Interfaces ; 7(5): 3314-22, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25602261

RESUMEN

A simple and environmentally friendly self-assembly process of oppositely charged polymer PEI and inorganic oxide SiO2 was demonstrated for the construction of an ultrathin layer on the surface of PE separator. The XPS, FT-IR, SEM, and EDS characterizations give clear evidence of the successful self-assembly of PEI and SiO2 without significantly increasing the thickness and sacrificing the pristine porous structure of PE separator. This process improves a variety of crucial properties of PE separator such as the electrolyte wetting, the electrolyte uptake, the thermal stability, the ionic conductivity, Li+ transference number, the electrochemical stability and the compatibility with lithium electrode, endowing lithium-ion battery (Li as anode and LiCoO2 as cathode) with excellent capacity retention at high C-rates and superior cycling performance. At the current density of 5 C, the cell with PE separator almost loses all the capacity. In contrast, the cell with (PEI/SiO2)-modified PE separator still holds 45.2% of the discharge capacity at 0.2 C. The stabilized SEI formation and high Li+ transference number of (PEI/SiO2)-modified PE separator were interpreted to be the substantial reasons leading to the remarkably enhanced battery performance, rendering some new insights into the role of the separator in lithium-ion batteries.

5.
Chem Asian J ; 8(9): 2102-10, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23744812

RESUMEN

Two analogous multipolar chromophores (1 and 2) that contained 2,3,8-trisubstituted indenoquinoxaline moieties have been synthesized and characterized for their two-photon absorption properties, both in the femtosecond and nanosecond time regimes. We demonstrated that their multi-branched framework structures, which incorporated appropriately functionalized indenoquinoxaline units, afforded large molecular nonlinear absorptivities within the studied spectroscopic range. Effective optical-power-limiting and stabilization behaviors in the nanosecond regime of dye molecule (2) were also investigated and the results indicated that such a structural motif could be a useful approach to the molecular design of highly active two-photon systems for quick-response and related broadband optical-suppressing applications, in particular for confronting laser pulses of a long duration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA