Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur J Med Chem ; 277: 116773, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39163779

RESUMEN

Due to the emerging global epidemic of obesity, developing safe and effective agents for anti-obesity is urgently needed. Our previous study found that 2-pyrimidinylindole derivative Wd3d exhibited potential anti-obesity activity. Herein, to further optimize the potential moiety, structural modifications were proceeded for two rounds in this study. Firstly, we designed, synthesized, and evaluated 36 new derivatives of 2-pyrimidinylindole scaffold with different substituents on the indole ring and pyrimidine ring to investigate their structure-activity relationship (SAR). Then, analogs with potent activity had the aldehyde group replaced with the acylhydrazone group to reduce cytotoxicity and improve metabolic stability. Detailed SAR studies and animal evaluation experiments led to the discovery of the compound 9ga, which significantly reduced TG accumulation with an EC50 value of 0.07 µM and showed relatively low cytotoxicity with an IC50 value of around 24 µM. Oral administration of 9ga effectively prevented the excessive growth of body weight and lessened fat mass as well as liver mass, decreased lipid accumulation in the liver and blood, and improved the heart injury parameter in the diet-induced obesity mouse model significantly better than Wd3d. A mechanism study showed that 9ga regulated the lipid metabolism during early adipogenesis by inhibiting PPARγ pathway. In conclusion, our study further highlights the anti-obesity potential of 2-pyrimidinylindole derivatives in diet-induced obesity.

2.
J Med Chem ; 67(14): 12439-12458, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38996004

RESUMEN

The discovery of effective and safe antiobesity agents remains a challenging yet promising field. Our previous studies identified Bouchardatine derivatives as potential antiobesity agents. However, the 8a-aldehyde moiety rendered them unsuitable for drug development. In this study, we designed two series of novel derivatives to modify this structural feature. Through a structure-activity relationship study, we elucidated the role of the 8a-aldehyde group in toxicity induction. We identified compound 14d, featuring an 8a-N-acylhydrazone moiety, which exhibited significant lipid-lowering activity and reduced toxicity. Compound 14d shares a similar lipid-lowering mechanism with our lead compound 3, but demonstrates improved pharmacokinetic properties and safety profile. Both oral and injectable administration of 14d significantly reduced body weight gain and ameliorated metabolic syndrome in diet-induced obese mice. Our findings identify 14d as a promising antiobesity agent and highlight the potential of substituting the aldehyde group with an N-acylhydrazone to enhance drug-like properties.


Asunto(s)
Aldehídos , Fármacos Antiobesidad , Hidrazonas , Obesidad , Animales , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/síntesis química , Fármacos Antiobesidad/farmacocinética , Fármacos Antiobesidad/uso terapéutico , Fármacos Antiobesidad/química , Hidrazonas/farmacología , Hidrazonas/química , Hidrazonas/síntesis química , Hidrazonas/farmacocinética , Hidrazonas/uso terapéutico , Ratones , Relación Estructura-Actividad , Aldehídos/química , Masculino , Obesidad/tratamiento farmacológico , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Humanos , Ratones Obesos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA