RESUMEN
There is an increasing appreciation that many innate and adaptive immune cell subsets permanently reside within non-lymphoid organs, playing a critical role in tissue homeostasis and defense. The best characterized are macrophages and tissue-resident T lymphocytes that work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental cues. The interaction of tissue epithelial, endothelial and stromal cells is also required to attract, differentiate, polarize and maintain organ immune cells in their tissue niche. All of these processes require dynamic regulation of cellular transcriptional programmes, with epigenetic mechanisms playing a critical role, including DNA methylation and post-translational histone modifications. A failure to appropriately regulate immune cell transcription inevitably results in inadequate or inappropriate immune responses and organ pathology. Here, with a focus on the mammalian kidney, an organ which generates differing regional environmental cues (including hypersalinity and hypoxia) due to its physiological functions, we will review the basic concepts of tissue immunity, discuss the technologies available to profile epigenetic modifications in tissue immune cells, including those that enable single-cell profiling, and consider how these mechanisms influence the development, phenotype, activation and function of different tissue immune cell subsets, as well as the immunological function of structural cells.
Asunto(s)
Señales (Psicología) , Epigénesis Genética , Animales , Metilación de ADN , Homeostasis , Humanos , Inmunidad Innata , Mamíferos , Linfocitos TRESUMEN
TurboID is a highly efficient biotin-labelling enzyme, which can be used to explore a number of new intercalating proteins due to the very transient binding and catalytic functions of many proteins. TGF-ß/Smad3 signaling pathway is involved in many diseases, especially in diabetic nephropathy and inflammation. In this paper, a stably cell line transfected with Smad3 were constructed by using lentiviral infection. To further investigate the function of TGF-ß/Smad3, the protein labeling experiment was conducted to find the interacting protein with Smad3 gene. Label-free mass spectrometry analysis was performed to obtain 491 interacting proteins, and the interacting protein hnRNPM was selected for IP and immunofluorescence verification, and it was verified that the Smad3 gene had a certain promoting effect on the expression of hnRNPM gene, and then had an inhibitory effect on IL-6. It lays a foundation for further study of the function of Smad3 gene and its involved regulatory network.
Asunto(s)
Proteína smad3 , Proteína smad3/metabolismo , Proteína smad3/genética , Humanos , Células HEK293 , Interleucina-6/metabolismo , Interleucina-6/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Transducción de SeñalRESUMEN
Resolution control and expansibility have always been challenges to the fabrication of structural color materials. Here, a facile strategy to print cholesteric liquid crystal elastomers (CLCEs) into complex structural color patterns with variable resolution and enhanced expansibility is reported. A volatile solvent is introduced into the synthesized CLC oligomers, modifying its rheological properties and allowing direct-ink-writing (DIW) under mild conditions. The combination of printing shear flow and anisotropic deswelling of ink drives the CLC molecules into an ordered cholesteric arrangement. The authors meticulously investigate the influence of printing parameters to achieve resolution control over a wide range, allowing for the printing of multi-sized 1D or 2D patterns with constant quality. Furthermore, such solvent-cast direct-ink-writing (DIW) strategy is highly expandable and can be integrated easily into the DIW of bionic robots. Multi-responsive bionic butterfly and flower are printed with biomimetic in both locomotion and coloration. Such designs dramatically reduced the processing difficulty of precise full-color printing and expanded the capability of structural color materials to collaborate with other systems.
RESUMEN
Discovering the biological basis of aging is one of the greatest remaining challenges for biomedical field. Work on the biology of aging has discovered a range of interventions and pathways that control aging rate. Thus, we developed AgingBank (http://bio-bigdata.hrbmu.edu.cn/AgingBank) which was a manually curated comprehensive database and high-throughput analysis platform that provided experimentally supported multi-omics data relevant to aging in multiple species. AgingBank contained 3771 experimentally verified aging-related multi-omics entries from studies across more than 50 model organisms, including human, mice, worms, flies and yeast. The records included genome (single nucleotide polymorphism, copy number variation and somatic mutation), transcriptome [mRNA, long non-coding RNA (lncRNA), microRNA (miRNA) and circular RNA (circRNA)], epigenome (DNA methylation and histone modification), other modification and regulation elements (transcription factor, enhancer, promoter, gene silence, alternative splicing and RNA editing). In addition, AgingBank was also an online computational analysis platform containing five useful tools (Aging Landscape, Differential Expression Analyzer, Data Heat Mapper, Co-Expression Network and Functional Annotation Analyzer), nearly 112 high-throughput experiments of genes, miRNAs, lncRNAs, circRNAs and methylation sites related with aging. Cancer & Aging module was developed to explore the relationships between aging and cancer. Submit & Analysis module allows users upload and analyze their experiments data. AginBank is a valuable resource for elucidating aging-related biomarkers and relationships with other diseases.
Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , Ratones , Animales , Variaciones en el Número de Copia de ADN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Circular , MicroARNs/genética , Neoplasias/genética , Bases del Conocimiento , Envejecimiento/genéticaRESUMEN
Long non-coding RNAs (lncRNAs) that emanate from enhancer regions (defined as enhancer-associated lncRNAs, or elncRNAs) are emerging as critical regulators in disease progression. However, their biological characteristics and clinical relevance have not been fully portrayed. Here, based on the traditional expression quantitative loci (eQTL) and our optimized residual eQTL method, we comprehensively described the genetic effect on elncRNA expression in more than 300 lymphoblastoid cell lines. Meanwhile, a chromatin atlas of elncRNAs relative to the genetic regulation state was depicted. By applying the maximum likelihood estimate method, we successfully identified causal elncRNAs for protein-coding gene expression reprogramming and showed their associated single nucleotide polymorphisms (SNPs) favor binding of transcription factors. Further epigenome analysis revealed two immune-associated elncRNAs AL662844.4 and LINC01215 possess high levels of H3K27ac and H3K4me1 in human cancer. Besides, pan-cancer analysis of 3D genome, transcriptome, and regulatome data showed they potentially regulate tumor-immune cell interaction through affecting MHC class I genes and CD47, respectively. Moreover, our study showed there exist associations between elncRNA and patient survival. Finally, we made a user-friendly web interface available for exploring the regulatory relationship of SNP-elncRNA-protein-coding gene triplets (http://bio-bigdata.hrbmu.edu.cn/elncVarReg). Our study provides critical mechanistic insights for elncRNA function and illustrates their implications in human cancer.
Asunto(s)
Neoplasias , ARN Largo no Codificante , Cromatina/genética , Regulación de la Expresión Génica , Humanos , Funciones de Verosimilitud , Neoplasias/genética , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante/genéticaRESUMEN
Intertumoral immune heterogeneity is a critical reason for distinct clinical benefits of immunotherapy in lung adenocarcinoma (LUAD). Tumor immunophenotype (immune 'Hot' or 'Cold') suggests immunological individual differences and potential clinical treatment guidelines. However, employing epigenome signatures to determine tumor immunophenotypes and responsive treatment is not well understood. To delineate the tumor immunophenotype and immune heterogeneity, we first distinguished the immune 'Hot' and 'Cold' tumors of LUAD based on five immune expression signatures. In terms of clinical presentation, the immune 'Hot' tumors usually had higher immunoactivity, lower disease stages and better survival outcomes than 'Cold' tumors. At the epigenome levels, we observed that distinct DNA methylation patterns between immunophenotypes were closely associated with LUAD development. Hence, we identified a set of five CpG sites as the immunophenotype-related methylation signature (iPMS) for tumor immunophenotyping and further confirmed its efficiency based on a machine learning framework. Furthermore, we found iPMS and immunophenotype-related immune checkpoints (IPCPs) could contribute to the risk of tumor progression, implying IPCP has the potential to be a novel immunotherapy blockade target. After further parsing of the role of iPMS-predicted immunophenotypes, we found immune 'Hot' was a protective factor leading to better survival outcomes when patients received the anti-PD-1/PD-L1 immunotherapy. And iPMS was also a well-performed signature (AUC = 0.752) for predicting the durable/nondurable clinical benefits. In summary, our study explored the role of epigenome signature in clinical tumor immunophenotyping. Utilizing iPMS to characterize tumor immunophenotypes will facilitate developing personalized epigenetic anticancer approaches.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Biomarcadores de Tumor/genética , Epigenoma , Humanos , Inmunofenotipificación , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/terapiaRESUMEN
Although combination antiretroviral therapy (ART) blocks HIV replication, it is not curative because infected CD4+ T cells that carry intact, infectious proviruses persist. Understanding the behavior of clones of infected T cells is important for understanding the stability of the reservoir; however, the stabilities of clones of infected T cells in persons on long-term ART are not well defined. We determined the relative stabilities of clones of infected and uninfected CD4+ T cells over time intervals of one to four years in three individuals who had been on ART for 9-19 years. The largest clones of uninfected T cells were larger than the largest clones of infected T cells. Clones of infected CD4+ T cells were more stable than clones of uninfected CD4+ T cells of a similar size. Individual clones of CD4+ T cells carrying intact, infectious proviruses can expand, contract, or remain stable over time.
Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , Células Clonales , ADN Viral , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , Provirus/genéticaRESUMEN
Fully considering the mechanical and photoelastic anisotropies of monocrystalline silicon, the impacts of spatial symmetries on the stimulated Brillouin scatterings (SBSs) in nanoscale suspended silicon waveguides are studied theoretically and numerically based on group theory. First, starting from an assumption that the principal material coordinate system can be arbitrarily orientated in a waveguide with fixed geometry, the silicon waveguides are systematically classified into a number of point groups according to their spatial symmetry features. Thereafter, the symmetry characteristics of physical fields and SBS opto-mechanical coupling characteristics in the silicon waveguides belonging to different point groups are further examined, and the major new findings can be summarized as follows: The SBS opto-mechanical couplings in several kinds of silicon waveguides with certain nontrivial symmetry features exhibit relatively predictable behaviors in that the opto-mechanical coupling coefficients can be deterministically vanishing or nonvanishing under very few constraints, which can thus serve as general symmetry selection rules for SBSs in suspended silicon waveguides. The results obtained in the present study could be a useful theoretical reference for the design of novel SBS-active silicon photonic devices.
RESUMEN
Ovarian cancer (OC) is a highly heterogeneous disease, with patients at different tumor staging having different survival times. Metabolic reprogramming is one of the key hallmarks of cancer; however, the significance of metabolism-related genes in the prognosis and therapy outcomes of OC is unclear. In this study, we used weighted gene coexpression network analysis and differential expression analysis to screen for metabolism-related genes associated with tumor staging. We constructed the metabolism-related gene prognostic index (MRGPI), which demonstrated a stable prognostic value across multiple clinical trial end points and multiple validation cohorts. The MRGPI population had its distinct molecular features, mutational characteristics, and immune phenotypes. In addition, we investigated the response to immunotherapy in MRGPI subgroups and found that patients with low MRGPI were prone to benefit from anti-PD-1 checkpoint blockade therapy and exhibited a delayed treatment effect. Meanwhile, we identified four candidate therapeutic drugs (ABT-737, crizotinib, panobinostat, and regorafenib) for patients with high MRGPI, and we evaluated the pharmacokinetics and safety of the candidate drugs. In summary, the MRGPI was a robust clinical feature that could predict patient prognosis, immunotherapy response, and candidate drugs, facilitating clinical decision making and therapeutic strategy of OC.
Asunto(s)
Inmunoterapia , Neoplasias Ováricas , Humanos , Femenino , Pronóstico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Reprogramación Metabólica , MutaciónRESUMEN
BACKGROUND: Stroke survivors are at high risk of coping with cognitive problems after stroke. In recent decades, the relationship between socioeconomic status (SES) and health-related outcomes has been a topic of considerable interest. Learning more about the potential impact of SES on poststroke cognitive dysfunction is of great importance. OBJECTIVE: The purpose of this systematic review and meta-analysis was to summarize the association between SES and poststroke cognitive function by quantifying the effect sizes of the existing studies. METHOD: We searched studies from PubMed, Ovid, Embase, Cochrane, Scopus, and PsychINFO up to January 30th 2024 and the references of relevant reviews. Studies reporting the risk of poststroke cognitive dysfunction as assessed by categorized SES indicators were included. The Newcastle-Ottawa scale and the Agency for Healthcare Research and Quality were used to evaluate the study quality. Meta-analyses using fixed-effect models or random-effect models based on study heterogeneity were performed to estimate the influence of SES on cognitive function after stroke, followed by subgroup analyses stratified by study characteristics. RESULTS: Thirty-four studies were eligible for this systematic review and meta-analysis. Of which, 19 studies reported poststroke cognitive impairment (PSCI) as the outcome, 13 reported poststroke dementia (PSD), one reported both PSCI and PSD, and one reported vascular cognitive impairment no dementia. The findings showed that individuals with lower SES levels had a higher risk of combined poststroke cognitive dysfunction (odds ratio (OR) = 1.91, 95% confidence interval (CI) = 1.59-2.29), PSCI (OR = 2.09, 95% CI = 1.57-2.78), and PSD (OR = 1.95, 95% CI = 1.48-2.57). Subgroup analyses stratified by SES indicators demonstrated the protective effects of education and occupation against the diagnoses of combined poststroke cognitive dysfunction, PSCI, and PSD. CONCLUSIONS: Stroke survivors belonging to a low SES are at high risk of poststroke cognitive dysfunction. Our findings add evidence for public health strategies to reduce the risk of poststroke cognitive dysfunction by reducing SES inequalities.
Asunto(s)
Disfunción Cognitiva , Clase Social , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/psicología , Accidente Cerebrovascular/complicaciones , Disfunción Cognitiva/etiología , Cognición/fisiología , Demencia/psicologíaRESUMEN
BACKGROUND: The Oxidative Balance Score (OBS) was created to evaluate an individual's overall antioxidant status. The objective of this study was to examine the association between OBS and abdominal aortic calcification (AAC) among individuals aged ≥ 40 years. METHODS: This population-based cross-sectional study used data from the National Health and Nutrition Examination Survey in 2013-2014 and included adults aged ≥ 40 years. Survey-weighted multivariable logistic and restricted cubic spline models were used to assess the association between OBS and AAC. RESULTS: Among 2520 participants, 744 were diagnosed with AAC (weighted percentage, 28.13%). Survey-weighted multivariable logistic revealed an inverse association between OBS and AAC [0.98 (0.96, 1.00)], and the nonlinear dose-response relationship was observed. Subgroup analysis and interaction tests revealed that this inverse relationship was consistent across different populations (all P for interaction > 0.05). CONCLUSIONS: OBS was inversely associated with the prevalence of AAC among individuals aged ≥ 40 years. Maintaining a higher OBS may be beneficial in reducing the burden of AAC.
Asunto(s)
Aorta Abdominal , Enfermedades de la Aorta , Encuestas Nutricionales , Estrés Oxidativo , Calcificación Vascular , Humanos , Estudios Transversales , Masculino , Femenino , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/epidemiología , Persona de Mediana Edad , Aorta Abdominal/diagnóstico por imagen , Aorta Abdominal/patología , Anciano , Enfermedades de la Aorta/epidemiología , Enfermedades de la Aorta/diagnóstico por imagen , Prevalencia , Factores de Edad , Factores de Riesgo , Estados Unidos/epidemiología , Adulto , Medición de Riesgo , Antioxidantes/metabolismoRESUMEN
Rationale: Obesity affects 40% of U.S. adults, is associated with a proinflammatory state, and presents a significant risk factor for the development of severe coronavirus disease (COVID-19). To date, there is limited information on how obesity might affect immune cell responses in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Objectives: To determine the impact of obesity on respiratory tract immunity in COVID-19 across the human lifespan. Methods: We analyzed single-cell transcriptomes from BAL in three ventilated adult cohorts with (n = 24) or without (n = 9) COVID-19 from nasal immune cells in children with (n = 14) or without (n = 19) COVID-19, and from peripheral blood mononuclear cells in an independent adult COVID-19 cohort (n = 42), comparing obese and nonobese subjects. Measurements and Main Results: Surprisingly, we found that obese adult subjects had attenuated lung immune or inflammatory responses in SARS-CoV-2 infection, with decreased expression of IFN-α, IFN-γ, and TNF-α (tumor necrosis factor α) response gene signatures in almost all lung epithelial and immune cell subsets, and lower expression of IFNG and TNF in specific lung immune cells. Peripheral blood immune cells in an independent adult cohort showed a similar but less marked reduction in type-I IFN and IFNγ response genes, as well as decreased serum IFNα, in obese patients with SARS-CoV-2. Nasal immune cells from obese children with COVID-19 also showed reduced enrichment of IFN-α and IFN-γ response genes. Conclusions: These findings show blunted tissue immune responses in obese patients with COVID-19, with implications for treatment stratification, supporting the specific application of inhaled recombinant type-I IFNs in this vulnerable subset.
Asunto(s)
COVID-19 , Interferón Tipo I , Obesidad Infantil , Adulto , Humanos , Niño , SARS-CoV-2 , Leucocitos Mononucleares , Pulmón/patologíaRESUMEN
Endothelial dysfunction (ED) serves as the pathological basis for various cardiovascular diseases. Guanosine triphosphate cyclopyrrolone 1 (GCH1) emerges as a pivotal protein in sustaining nitric oxide (NO) production within endothelial cells, yet it undergoes degradation under oxidative stress, contributing to endothelial cell dysfunction. Citronellal (CT), a monoterpenoid, has been shown to ameliorate endothelial dysfunction induced by in atherosclerosis rats. However, whether CT can inhibit the degradation of GCH1 protein is not clear. It has been reported that ubiquitination may play a crucial role in regulating GCH1 protein levels and activities. However, the specific E3 ligase for GCH1 and the molecular mechanism of GCH1 ubiquitination remain unclear. Using data-base exploration analysis, we find that the levels of the E3 ligase Smad-ubiquitination regulatory factor 2 (Smurf2) negatively correlate with those of GCH1 in vascular tissues and HUVECs. We observe that Smurf2 interacts with GCH1 and promotes its degradation via the proteasome pathway. Interestingly, ectopic Smurf2 expression not only decreases GCH1 levels but also reduces cell proliferation and reactive oxygen species (ROS) levels, mostly because of increased GCH1 accumulation. Furthermore, we identify BH 4/eNOS as downstream of GCH1. Taken together, our results indicate that CT can obviously improve vascular endothelial injury in Type 1 diabetes mellitus (T1DM) rats and reverse the expressions of GCH1 and Smurf2 proteins in aorta of T1DM rats. Smurf2 promotes ubiquitination and degradation of GCH1 through proteasome pathway in HUVECs. We conclude that the Smurf2-GCH1 interaction might represent a potential target for improving endothelial injury.
Asunto(s)
Monoterpenos Acíclicos , Células Endoteliales de la Vena Umbilical Humana , Ubiquitina-Proteína Ligasas , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Monoterpenos Acíclicos/farmacología , Monoterpenos Acíclicos/metabolismo , Ratas , Ubiquitinación , Aldehídos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Masculino , Ratas Sprague-Dawley , Óxido Nítrico/metabolismo , Proliferación Celular , Estabilidad Proteica , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Estrés OxidativoRESUMEN
Previous studies have shown that puerarin plays a key role in protecting humans and animals from cardiovascular diseases. The exact mechanism of the therapeutic effect of puerarin on various cardiovascular diseases (protective effect on cardiomyocytes) is still unclear. In the present study, we identify the role of puerarin in an animal model of experimental heart failure (HF) and explore its underlying mechanisms. The HF rat model is induced by intraperitoneal injection of adriamycin (ADR), and puerarin is administered intragastrically at low, medium, and high concentrations. We demonstrate that puerarin significantly improves myocardial fibrosis and inflammatory infiltration and, as a result, improves cardiac function in ADR-induced HF rats. Mechanistically, we find for the first time that puerarin inhibits overactivated Na +/H + exchange isoform 1 (NHE1) in HF, which may improve HF by decreasing Na + and Ca 2+ ion concentrations and attenuating mitochondrial damage caused by calcium overload; on the other hand, puerarin inhibits the activation of the p38 pathway in HF, reduces the expressions of TGF-ß and proinflammatory cytokines, and suppresses myocardial fibrosis. In conclusion, our results suggest that Puerarin is an effective drug against HF and may play a protective role in the myocardium by inhibiting the activation of p38 and its downstream NHE1.
Asunto(s)
Cardiomiopatías , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Isoflavonas , Animales , Ratas , Calcio/metabolismo , Cardiomiopatías/metabolismo , Enfermedades Cardiovasculares/metabolismo , Fibrosis , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismoRESUMEN
Diapause, a programmed developmental arrest primarily induced by seasonal environmental changes, is very common in the animal kingdom, and found in vertebrates and invertebrates alike. Diapause provides an adaptive advantage to animals, as it increases the odds of surviving adverse conditions. In insects, individuals perceive photoperiodic cues and modify endocrine signaling to direct reproductive diapause traits, such as ovary arrest and increased fat accumulation. However, it remains unclear as to which endocrine factors are involved in this process and how they regulate the onset of reproductive diapause. Here, we found that the long day-mediated drop in the concentration of the steroid hormone ecdysone is essential for the preparation of photoperiodic reproductive diapause in Colaphellus bowringi, an economically important cabbage beetle. The diapause-inducing long-day condition reduced the expression of ecdysone biosynthetic genes, explaining the drop in the titer of 20-hydroxyecdysone (20E, the active form of ecdysone) in female adults. Application of exogenous 20E induced vitellogenesis and ovarian development but reduced fat accumulation in the diapause-destined females. Knocking down the ecdysone receptor (EcR) in females destined for reproduction blocked reproductive development and induced diapause traits. RNA-seq and hormone measurements indicated that 20E stimulates the production of juvenile hormone (JH), a key endocrine factor in reproductive diapause. To verify this, we depleted three ecdysone biosynthetic enzymes via RNAi, which confirmed that 20E is critical for JH biosynthesis and reproductive diapause. Importantly, impairing Met function, a component of the JH intracellular receptor, partially blocked the 20E-regulated reproductive diapause preparation, indicating that 20E regulates reproductive diapause in both JH-dependent and -independent manners. Finally, we found that 20E deficiency decreased ecdysis-triggering hormone signaling and reduced JH production, thereby inducing diapause. Together, these results suggest that 20E signaling is a pivotal regulator that coordinates reproductive plasticity in response to environmental inputs.
Asunto(s)
Escarabajos/genética , Diapausa/genética , Ecdisona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Fotoperiodo , Animales , Escarabajos/metabolismo , Ecdisterona/metabolismo , Femenino , Hormonas Juveniles/deficiencia , Hormonas Juveniles/genética , Metamorfosis Biológica/genética , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Reproducción/genética , Transducción de SeñalRESUMEN
Over the years, there has been notable progress in understanding the pathogenesis and treatment modalities of diabetes and its complications, including the application of metabolomics in the study of diabetes, capturing attention from researchers worldwide. Advanced mass spectrometry, including gas chromatography-tandem mass spectrometry (GC-MS/MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS), etc., has significantly broadened the spectrum of detectable metabolites, even at lower concentrations. Advanced mass spectrometry has emerged as a powerful tool in diabetes research, particularly in the context of metabolomics. By leveraging the precision and sensitivity of advanced mass spectrometry techniques, researchers have unlocked a wealth of information within the metabolome. This technology has enabled the identification and quantification of potential biomarkers associated with diabetes and its complications, providing new ideas and methods for clinical diagnostics and metabolic studies. Moreover, it offers a less invasive, or even non-invasive, means of tracking disease progression, evaluating treatment efficacy, and understanding the underlying metabolic alterations in diabetes. This paper summarizes advanced mass spectrometry for the application of metabolomics in diabetes mellitus, gestational diabetes mellitus, diabetic peripheral neuropathy, diabetic retinopathy, diabetic nephropathy, diabetic encephalopathy, diabetic cardiomyopathy, and diabetic foot ulcers and organizes some of the potential biomarkers of the different complications with the aim of providing ideas and methods for subsequent in-depth metabolic research and searching for new ways of treating the disease.
Asunto(s)
Biomarcadores , Complicaciones de la Diabetes , Diabetes Mellitus , Metabolómica , Humanos , Biomarcadores/metabolismo , Metabolómica/métodos , Diabetes Mellitus/metabolismo , Complicaciones de la Diabetes/metabolismo , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas/métodos , AnimalesRESUMEN
Rice grain number is a crucial agronomic trait impacting yield. In this study, we characterized a quantitative trait locus (QTL), GRAIN NUMBER 1.1 (GN1.1), which encodes a Flowering Locus T-like1 (FT-L1) protein and acts as a negative regulator of grain number in rice. The elite allele GN1.1B, derived from the Oryza indica variety, BF3-104, exhibits a 14.6% increase in grain yield compared with the O. japonica variety, Nipponbare, based on plot yield tests. We demonstrated that GN1.1 interacted with and enhanced the stability of ADP-ribosylation factor (Arf)-GTPase-activating protein (Gap), OsZAC. Loss of function of OsZAC results in increased grain number. Based on our data, we propose that GN1.1B facilitates the elevation of auxin content in young rice panicles by affecting polar auxin transport (PAT) through interaction with OsZAC. Our study unveils the pivotal role of the GN1.1 locus in rice panicle development and presents a novel, promising allele for enhancing rice grain yield through genetic improvement.
Asunto(s)
Ácidos Indolacéticos , Oryza , Proteínas de Plantas , Sitios de Carácter Cuantitativo , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Sitios de Carácter Cuantitativo/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transporte Biológico/genética , Grano Comestible/genética , Grano Comestible/metabolismo , Grano Comestible/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genéticaRESUMEN
Aging is a complex process that significantly impacts the immune system. The aging-related decline of the immune system, termed immunosenescence, can lead to disease development, including cancer. The perturbation of immunosenescence genes may characterize the associations between cancer and aging. However, the systematical characterization of immunosenescence genes in pan-cancer remains largely unexplored. In this study, we comprehensively investigated the expression of immunosenescence genes and their roles in 26 types of cancer. We developed an integrated computational pipeline to identify and characterize immunosenescence genes in cancer based on the expression profiles of immune genes and clinical information of patients. We identified 2218 immunosenescence genes that were significantly dysregulated in a wide variety of cancers. These immunosenescence genes were divided into six categories based on their relationships with aging. Besides, we assessed the importance of immunosenescence genes in clinical prognosis and identified 1327 genes serving as prognostic markers in cancers. BTN3A1, BTN3A2, CTSD, CYTIP, HIF1AN, and RASGRP1 were associated with ICB immunotherapy response and served as prognostic factors after ICB immunotherapy in melanoma. Collectively, our results furthered the understanding of the relationship between immunosenescence and cancer and provided insights into immunotherapy for patients.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Sistema Inmunológico , Inmunosenescencia , Neoplasias , Perfilación de la Expresión Génica , Envejecimiento , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Humanos , Inmunoterapia , Resultado del TratamientoRESUMEN
Immunosenescence has been demonstrated to play an important role in tumor progression. However, there is lacking comprehensive analyses of immunosenescence-related pathways. Meanwhile, the sex disparities of immunosenescence in cancer are still poorly understood. In this study, we analyzed the multi-omics data of 12,836 tumor samples, including genomics, transcriptomics, epigenomics, proteomics, and metabolomics. We systematically identified immunosenescence pathways that were disordered across cancer types. The mutations and copy number variations of immunosenescence pathways were found to be more active in pan-cancer. We reconstructed the immunosenescence core pathways (ISC-pathways) to improve the ability of prognostic stratification in 33 cancer types. We also found the head and neck squamous carcinoma (HNSC) contained abundant sex-specific immunosenescence features and showed sex differences in survival. We found that OSI-027 was a potential sex-specific drug in HNSC tumors, which tended to be more effective in male HNSC by targeting the MTOR gene in the PI3K-Akt signaling pathway. In conclusion, our study provided a systematic understanding of immunosenescence pathways and revealed the global characteristics of immunosenescence in pan-cancer. We highlighted MTOR gene could be a powerful immunosenescence biomarker of HNSC that helps to develop sex-specific immunosenescence drugs.
Asunto(s)
Neoplasias de Cabeza y Cuello , Inmunosenescencia , Femenino , Masculino , Humanos , Variaciones en el Número de Copia de ADN , Fosfatidilinositol 3-Quinasas , Carcinoma de Células Escamosas de Cabeza y Cuello , Serina-Treonina Quinasas TOR/genéticaRESUMEN
BACKGROUND: Circadian rhythm regulates complex physiological activities in organisms. A strong link between circadian dysfunction and cancer has been identified. However, the factors of dysregulation and functional significance of circadian rhythm genes in cancer have received little attention. METHODS: In 18 cancer types from The Cancer Genome Atlas (TCGA), the differential expression and genetic variation of 48 circadian rhythm genes (CRGs) were examined. The circadian rhythm score (CRS) model was created using the ssGSEA method, and patients were divided into high and low groups based on the CRS. The Kaplan-Meier curve was created to assess the patient survival rate. Cibersort and estimate methods were used to identify the infiltration characteristics of immune cells between different CRS subgroups. Gene Expression Omnibus (GEO) dataset is used as verification queue and model stability evaluation queue. The CRS model's ability to predict chemotherapy and immunotherapy was assessed. Wilcoxon rank-sum test was used to compare the differences of CRS among different patients. We use CRS to identify potential "clock-drugs" by the connective map method. RESULTS: Transcriptomic and genomic analyses of 48 CRGs revealed that most core clock genes are up-regulated, while clock control genes are down-regulated. Furthermore, we show that copy number variation may affect CRGs aberrations. Based on CRS, patients can be classified into two groups with significant differences in survival and immune cell infiltration. Further studies showed that patients with low CRS were more sensitive to chemotherapy and immunotherapy. Additionally, we identified 10 compounds (e.g. flubendazole, MLN-4924, ingenol) that are positively associated with CRS, and have the potential to modulate circadian rhythms. CONCLUSIONS: CRS can be utilized as a clinical indicator to predict patient prognosis and responsiveness to therapy, and identify potential "clock-drugs".