Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062817

RESUMEN

Depression is one of the most common psychological disorders nowadays. Studies have shown that 20(S)-protopanaxatriol (PPT) can effectively improve depressive symptoms in mice. However, its mechanism needs to be further explored. In this study, we used an integrated approach combining network pharmacology and transcriptomics to explore the potential mechanisms of PPT for depression. First, the potential targets and pathways of PPT treatment of depression were screened through network pharmacology. Secondly, the BMKCloud platform was used to obtain brain tissue transcription data of chronic unpredictable mild stress (CUMS) model mice and screen PPT-altered differential expression genes (DEGs). Gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed using network pharmacology and transcriptomics. Finally, the above results were verified by molecular docking, Western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR). In this study, we demonstrated that PPT improved depression-like behavior and brain histopathological changes in CUMS mice, downregulated nitric oxide (NO) and interleukin-6 (IL-6) levels, and elevated serum levels of 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) after PPT treatment compared to the CUMS group. Eighty-seven potential targets and 350 DEGs were identified by network pharmacology and transcriptomics. Comprehensive analysis showed that transthyretin (TTR), klotho (KL), FOS, and the phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling pathway were closely associated with the therapeutic effects of PPT. Molecular docking results showed that PPT had a high affinity for PI3K, AKT, TTR, KL, and FOS targets. Gene and protein level results showed that PPT could increase the expression of PI3K, phosphorylation of PI3K (p-PI3K), AKT, phosphorylation of AKT (p-AKT), TTR, and KL and inhibit the expression level of FOS in the brain tissue of depressed mice. Our data suggest that PPT may achieve the treatment of depression by inhibiting the expression of FOS, enhancing the expression of TTR and KL, and modulating the PI3K-AKT signaling pathway.


Asunto(s)
Depresión , Farmacología en Red , Sapogeninas , Transcriptoma , Animales , Ratones , Depresión/tratamiento farmacológico , Depresión/metabolismo , Sapogeninas/farmacología , Transcriptoma/efectos de los fármacos , Masculino , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Perfilación de la Expresión Génica , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos
2.
Nutrients ; 16(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39203724

RESUMEN

The by-product of deer skin, which has mostly been used as a decorative material, is rich in collagen and amino acids that could bind to Ca2+. Therefore, the preparation process, stability, antioxidant activity and calcium transport capacity of deer skin collagen peptide calcium chelate (Ca-DSCP) were investigated. In addition, the structure of the new chelate was characterized. The preparation process of Ca-DSCP was optimized using one-way experiments and response surface methodology. The ideal conditions were pH 9, 48 °C, and a peptide-to-calcium mass ratio of 5:1. The chelation rate was (60.73 ± 1.54)%. Zeta potential, XRD, UV-vis and FTIR analyses yielded that deer skin collagen peptides (DSCP) underwent a chelating reaction with calcium ions to form new structures. The stability of Ca-DSCP and the fraction of bioavailability of calcium ions were determined using in vitro gastrointestinal digestion and a Caco-2 cell monolayer model. The results showed that fraction of bioavailability and stability of DSCP were improved by influencing the structural characterization. The antioxidant activities of DSCP and Ca-DSCP were evaluated by measuring relevant oxidative stress indicators, DPPH radical scavenging capacity and hydroxyl radical scavenging capacity. Finally, bioinformatics and molecular docking techniques were utilized to screen and study the antioxidant mechanism of DSCP.


Asunto(s)
Antioxidantes , Calcio , Colágeno , Ciervos , Digestión , Péptidos , Piel , Animales , Humanos , Antioxidantes/farmacología , Células CACO-2 , Colágeno/metabolismo , Calcio/metabolismo , Péptidos/farmacología , Péptidos/química , Piel/metabolismo , Simulación del Acoplamiento Molecular , Disponibilidad Biológica , Tracto Gastrointestinal/metabolismo , Quelantes/farmacología
3.
Chin J Nat Med ; 22(6): 515-529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38906599

RESUMEN

Depression ranks among the most common neuropsychiatric disorders globally. Current studies examining the roles of inflammation and mitochondrial autophagy in the antidepressant efficacy of paeoniflorin (PF) are sparse. This study aimed to elucidate PF's antidepressant mechanism by promoting autophagy and inhibiting NLRP3 inflammasome activation using chronic unpredictable mild stimulation (CUMS)-induced C57BL/6 mouse models in vivo and corticosterone (CORT)-induced HT22 cell models in vitro. Results demonstrated that PF enhanced the viability of HT22 cells following CORT exposure, restored mitochondrial membrane potential (MMP), reduced reactive oxygen species accumulation, increased LC3 fluorescence intensity, and suppressed inflammatory cytokine secretion and inflammation activation. Additionally, PF ameliorated depressive behaviors induced by CUMS and improved damage in hippocampal neurons. It also reduced the expression of NLRP3, ASC, Caspase-1, IL-1ß, and the assembly of the NLRP3 inflammasome. Moreover, PF upregulated the expression of autophagy-related proteins in the hippocampus, facilitating the clearance of damaged mitochondria and enhancing autophagy. The role of autophagy in PF's antidepressant effects was further confirmed through the use of the autophagy inhibitor 3-methyladenine (3-MA), which reduced the efficacy of PF. In conclusion, PF effectively improved depressive behaviors in CUMS-induced mice and reduced NLRP3-mediated inflammation both in vivo and in vitro, likely via the induction of autophagy.


Asunto(s)
Autofagia , Depresión , Glucósidos , Inflamasomas , Ratones Endogámicos C57BL , Mitocondrias , Monoterpenos , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Glucósidos/farmacología , Autofagia/efectos de los fármacos , Monoterpenos/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Masculino , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo
4.
Aging (Albany NY) ; 15(9): 3381-3393, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-37166431

RESUMEN

Active ingredients were screened by TCMSP and swissADME, meanwhile, PharmMapper combined with UniProt database was used to predict the active ingredient target information, GeneCard database was employed to obtain Alzheimer's disease (AD)-related genes, Cytoscapes 3.7.2 software was utilized to map the active ingredient-target effect. Besides, Cytoscapes 3.7.2 software Bisogenet and Cyto NCA plug-in combined with STRING platform were utilized to map the protein-protein interaction (PPI) network, DAVID was employed for GO annotation, while KEGG plug-in was used for KEGG pathway enrichment. Mice were tested for inflammatory damage induced by intracerebral injection of lipopolysaccharide (LPS), as well as learning memory and anxiety by water maze and open field tests. In addition, the expression of Caspase-3 and Caspase-9, together with inflammatory factors TNF-α, IL-6, and IL-1ß was analyzed in serum. The expression levels of proteins related to PI3K-Akt signaling pathway in the brain were detected by Western blot (WB) assay. According to the results of network pharmacology, there were 35 active ingredients of licorice stem and leaf flavonoids screened, which exerted the anti-Alzheimer's disease (AD) effects via 67 targets and activated 41 signaling pathways including the PI3K-Akt pathway. Furthermore, Behavioural results revealed that Licorice stem and leaf flavonoids improved the learning and memory abilities of model mice and significantly improved the anxiety caused by inflammatory brain damage. Moreover, as suggested by HE staining and TUNEL staining of brain sections, Glycyrrhiza glabra stem and leaf flavonoids alleviated morphological lesions and cell nuclear damage in brain tissue. Results: of brain homogenate supernatant assay demonstrated that Glycyrrhiza glabra stem and leaf flavonoids had a significant effect on the levels of oxidative indicators superoxide dismutase (SOD), catalase (CAT), malonaldehyde (MDA), acetylcholine (Ach), acetylcholinesterase (AchE), Caspase-3, Caspase-9 and serum inflammatory factors TNF-α, IL-6 and IL-1ß. Additionally, WB assay results indicated that the PI3K-Akt signaling pathway was activated.


Asunto(s)
Enfermedad de Alzheimer , Glycyrrhiza , Animales , Ratones , Caspasa 3 , Caspasa 9 , Farmacología en Red , Factor de Necrosis Tumoral alfa , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Acetilcolinesterasa , Interleucina-6 , Enfermedad de Alzheimer/tratamiento farmacológico , Transducción de Señal
5.
Front Immunol ; 13: 1083862, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532005

RESUMEN

A 72-year-old woman presented to our hospital with elevation of serum transaminases. Her blood tests showed the hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) negative. Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) were given for the diffuse large B-cell lymphoma. She didn't receive anti- hepatitis B virus (HBV) drug for the isolated HBcAb positive. HBV reactivation confirmed based on the serum HBV DNA detectable until 19 months after stopping R-CHOP regimen. HBV DNA became undetectable after 4 weeks therapy with Tenofovir alafenamide fumarate (TAF). Serum transaminases went down to normal 3 months later after receiving TAF. HBV reactivation is a substantial risk for patients with isolated HBcAb positive receiving rituximab-containing chemotherapy without anti- HBV drug. Regular monitoring with a frequency of 1-3 months is the basis for timely diagnosis and treatment of HBV reactivation. Serum transaminases abnormalities may be the initial manifestation of HBV reactivation.


Asunto(s)
ADN Viral , Virus de la Hepatitis B , Humanos , Femenino , Anciano , Rituximab/efectos adversos , Activación Viral , Anticuerpos Monoclonales de Origen Murino , Transaminasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA