Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(6): 4794-4811, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38259226

RESUMEN

In recent years, remarkable advancements have been achieved in the field of halide perovskite solar cells (PSCs). However, the commercialization of PSCs has been impeded by challenges such as Pb leakage and the instability of hybrid organic-inorganic perovskites (HOIPs). Hence, the future lies in the development of environmentally friendly inorganic lead-free halide perovskites (LFHPs) based on elements like Sn, Ge, Bi, Sb, and Cu, which show great promise for photovoltaic applications. However, LFHP photovoltaic cells still face challenges such as low efficiency, poor film quality, and stability in comparison to HOIPs. These limitations significantly hinder their further development. To address these issues, element doping strategies, including cationic and anionic doping, as well as the use of additives, are frequently employed. These strategies aim to improve film quality, passivate defects, reduce the band gap, and enhance device performance and stability. In this paper, we aim to provide a comprehensive review of the recent research progress in doping strategies for LFHPs.

2.
Nanotechnology ; 35(7)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972403

RESUMEN

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) can be improved through the concurrent strategies of enhancing charge transfer and passivating defects. Graphite carbon nitride (g-C3N4) has been demonstrated as a promising modifier for optimizing energy level alignment and reducing defect density in PSCs. However, its preparation process can be complicated. A simple one-step calcination approach was used in this study to prepare g-C3N4-modified TiO2via the incorporation of urea into the TiO2precursor. This modification simultaneously tunes the energy level alignment and passivates interface defects. The comprehensive research confirms that the addition of moderate amounts of g-C3N4to TiO2results in an ideal alignment of energy levels with perovskite, thereby enhancing the ability to separate and transfer charges. Additionally, the g-C3N4-modified perovskite films exhibit an increase in grain size and crystallinity, which reduces intrinsic defects density and extends charge recombination time. Therefore, the g-C3N4-modified PSC achieves a champion PCE of 20.00%, higher than that of the control PSC (17.15%). Our study provides a systematic comprehension of the interfacial engineering strategy and offers new insights into the development of high-performance PSCs.

3.
Phys Chem Chem Phys ; 25(31): 20777-20781, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37525967

RESUMEN

Ab initio molecular dynamics simulations are performed to unravel the complex dynamic behaviors of BF4-based ionic liquids (ILs) at the SnO2/FAPbI3 interface. Specifically, the BMIM+BF4- IL not only eliminates the density of states induced by oxygen vacancies in SnO2, but also significantly increases the iodine ion migration energy barrier in FAPbI3.

4.
Phys Chem Chem Phys ; 25(26): 17112-17115, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37350683

RESUMEN

Accurate many-body perturbation theory-based calculations were used to study the electronic and excitonic properties of lead-free quaternary antiperovskite Ca6N2AsSb; large quasiparticle band gap renormalization, strong optical absorption, and low exciton binding energy, as well as high efficiency of >32% with a thickness of 500 nm were predicted.

5.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834926

RESUMEN

Activating mutations in KIT (CD117) have been associated with several diseases, including gastrointestinal stromal tumors and mastocytosis. Rapidly progressing pathologies or drug resistance highlight the need for alternative treatment strategies. Previously, we reported that the adaptor molecule SH3 binding protein 2 (SH3BP2 or 3BP2) regulates KIT expression at the transcriptional level and microphthalmia-associated transcription factor (MITF) expression at the post-transcriptional level in human mast cells and gastrointestinal stromal tumor (GIST) cell lines. Lately, we have found that the SH3BP2 pathway regulates MITF through miR-1246 and miR-5100 in GIST. In this study, miR-1246 and miR-5100 were validated by qPCR in the SH3BP2-silenced human mast cell leukemia cell line (HMC-1). MiRNA overexpression reduces MITF and MITF-dependent target expression in HMC-1. The same pattern was observed after MITF silencing. In addition, MITF inhibitor ML329 treatment reduces MITF expression and affects the viability and cell cycle progression in HMC-1. We also examine whether MITF downregulation affected IgE-dependent mast cell degranulation. MiRNA overexpression, MITF silencing, and ML329 treatment reduced IgE-dependent degranulation in LAD2- and CD34+-derived mast cells. These findings suggest MITF may be a potential therapeutic target for allergic reactions and deregulated KIT mast-cell-mediated disorders.


Asunto(s)
Leucemia de Mastocitos , MicroARNs , Factor de Transcripción Asociado a Microftalmía , Humanos , Muerte Celular/genética , Regulación hacia Abajo , Tumores del Estroma Gastrointestinal/metabolismo , Tumores del Estroma Gastrointestinal/patología , Inmunoglobulina E/metabolismo , Leucemia de Mastocitos/metabolismo , Mastocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , MicroARNs/genética
6.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37373272

RESUMEN

Antibodies are considered highly specific therapeutic agents in cancer medicines, and numerous formats have been developed. Among them, bispecific antibodies (BsAbs) have gained a lot of attention as a next-generation strategy for cancer therapy. However, poor tumor penetration is a major challenge because of their large size and thus contributes to suboptimal responses within cancer cells. On the other hand, affibody molecules are a new class of engineered affinity proteins and have achieved several promising results with their applications in molecular imaging diagnostics and targeted tumor therapy. In this study, an alternative format for bispecific molecules was constructed and investigated, named ZLMP110-277 and ZLMP277-110, that targets Epstein-Barr virus latent membrane protein 1 (LMP1) and latent membrane protein 2 (LMP2). Surface plasmon resonance (SPR), indirect immunofluorescence assay, co-immunoprecipitation, and near-infrared (NIR) imaging clearly demonstrated that ZLMP110-277 and ZLMP277-110 have good binding affinity and specificity for both LMP1 and LMP2 in vitro and in vivo. Moreover, ZLMP110-277 and ZLMP277-110, especially ZLMP277-110, significantly reduced the cell viability of C666-1 and CNE-2Z as compared to their monospecific counterparts. ZLMP110-277 and ZLMP277-110 could inhibit phosphorylation of proteins modulated by the MEK/ERK/p90RSK signaling pathway, ultimately leading to suppression of oncogene nuclear translocations. Furthermore, ZLMP110-277 and ZLMP277-110 showed significant antitumor efficacy in nasopharyngeal carcinoma-bearing nude mice. Overall, our results demonstrated that ZLMP110-277 and ZLMP277-110, especially ZLMP277-110, are promising novel prognostic indicators for molecular imaging and targeted tumor therapy of EBV-associated nasopharyngeal carcinoma.


Asunto(s)
Carcinoma , Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Animales , Ratones , Carcinoma Nasofaríngeo , Herpesvirus Humano 4/fisiología , Carcinoma/patología , Neoplasias Nasofaríngeas/patología , Ratones Desnudos , Proteínas de la Matriz Viral/metabolismo
7.
J Cell Sci ; 133(16)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32737220

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as important regulators of cancer progression. Abnormal sialylation leads to renal cell carcinoma (RCC) malignancy. However, the mechanism by which the lncRNA maternally expressed gene 3 (MEG3) mediates RCC progression by regulating ST3Gal1 transcription and EGFR sialylation is still unrevealed. Here, we found that the expression of MEG3 was higher in adjacent tissues than in RCC tissues, as well as downregulated in RCC cell lines compared to expression in normal renal cells. The proliferation, migration and invasion of RCC cells transfected with MEG3 was decreased, whereas knockdown of MEG3 had the opposite effect. The proliferative and metastatic abilities of RCC cells in vivo were concordant with their behavior in vitroST3Gal1 expression was dysregulated in RCC and was positively correlated with MEG3 By applying bioinformatics, c-Jun (also known as JUN) was identified as a transcription factor predicted to bind the promoter of ST3Gal1, and altered MEG3 levels resulted in changes to c-Jun expression. Furthermore, ST3Gal1 modulated EGFR sialylation to inhibit EGFR phosphorylation, which affected activation of the phosphoinositide 3-kinase (PI3K)-AKT pathway. Taken together, our findings provide a novel mechanism to elucidate the role of the MEG3-ST3Gal1-EGFR axis in RCC progression.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , ARN Largo no Codificante , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Proliferación Celular/genética , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Largo no Codificante/genética
8.
Phys Chem Chem Phys ; 24(47): 28662-28679, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36444533

RESUMEN

Novel Ag-based thin film solar cells have attracted extensive attention in recent years in the photovoltaic (PV) field due to their outstanding properties like a high light absorption coefficient, low toxicity, abundance, and an appropriate band gap. The emerging Ag-based thin film materials such as Ag2S, AgBiS2, Ag3CuS2, AgInS2, AgBiSe2, Ag2ZnSnS4, Ag(In1-x,Gax)Se2, AgaBibIc, Cs2AgBiBr6, and Cu2AgBiI6 are becoming ideal materials for light absorbing layers in the new generation of PV devices. Although the efficiency of ATFSCs has improved significantly in recent years, it is much lower than those of other PV devices. The relatively low efficiency of ATFSCs is mainly caused by structural defects such as poor crystallinity, voids, and instability which occur during the preparation of light absorbing layers. This paper defines the concept and classification of Ag-based materials and introduces in detail a thin film preparation method by overcoming structural defects. Finally, the vision of achieving high-efficiency ATFSCs by improving structural defects is proposed.

9.
Dig Dis Sci ; 67(6): 2182-2194, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34021424

RESUMEN

BACKGROUND: Fucosylation alteration is involved in several steps of human cancer pathogenesis. Dysregulated long non-coding RNA (lncRNA) often leads to malignancy in colorectal cancer (CRC). METHODS: Differential levels of LEF1-AS1, LEF1 and FUT8 are analyzed by qRT-PCR and western blot. Chip, RIP, EMSA and luciferase reporter assay confirm the direct interaction among LEF1-AS1, MLL1, H3K4me3, LEF1 and FUT8. Functionally, CRC cell proliferation, migration and invasion are analyzed by CCK8 assay, colony formation assay, transwell assay and flow cytometry. The xenografts nude mice models, lung metastasis and liver metastasis are established to determine the effect of LEF1-AS1/LEF1/FUT8 axis on CRC progression in vivo. RESULTS: Here, we identify that LEF1-AS1 and LEF1 are higher in CRC tissues than that in adjacent tissues, as well as upregulated in CRC cell lines than that in normal colorectal cells. Altered levels of LEF1-AS1 modulate LEF1 expression, while altered LEF1 could not regulate LEF1-AS1. LEF1-AS1 recruits MLL1 to the promoter region of LEF1, induces H3K4me3 methylation modification and mediates LEF1 transcription. Furthermore, α1-6 fucosyltransferase FUT8 is overexpressed in CRC tissues and positively correlated to LEF1. FUT8 is a direct target of transcription factor LEF1, which regulates FUT8 level. Altered FUT8 also regulates the core fucosylation of CRC cells, and LEF1-AS1 mediates FUT8 level through activation of Wnt/ß-catenin/LEF1 pathway, thereby resulting in ß-catenin nuclear translocation. In addition, LEF1-AS1 mediates the proliferation, migration and invasion of CRC cells in vitro. LEF1-AS1 silence hinders the tumorigenesis, liver and lung metastasis of SW620 cells in vivo, while overexpressed FUT8 abolishes the suppressive impact of LEF1-AS1 repression on the biological behavior of SW620 cells. CONCLUSION: Our studies uncovered a novel mechanism for constitutive LEF1-AS1/LEF1/FUT8 axis in CRC progression by regulating α1, 6-fucosylation via Wnt/ß-catenin pathway, and consequently, as a potential therapeutic target in CRC.


Asunto(s)
Neoplasias Colorrectales , Fucosiltransferasas , Neoplasias Pulmonares , Factor de Unión 1 al Potenciador Linfoide , ARN Largo no Codificante , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , Ratones Desnudos , ARN sin Sentido/genética , ARN Largo no Codificante/genética , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo
10.
J Clin Lab Anal ; 36(6): e24479, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35527696

RESUMEN

BACKGROUND: SARS-CoV-2 has spread worldwide causing more than 400 million people with virus infections since early 2020. Currently, the existing vaccines targeting the spike glycoprotein (S protein) of SARS-CoV-2 are facing great challenge from the infection of SARS-CoV-2 virus and its multiple S protein variants. Thus, we need to develop a new generation of vaccines to prevent infection of the SARS-CoV-2 variants. Compared with the S protein, the nucleocapsid protein (N protein) of SARS-CoV-2 is more conservative and less mutations, which also plays a vital role in viral infection. Therefore, the N protein may have the great potential for developing new vaccines. METHODS: The N protein of SARS-CoV-2 was recombinantly expressed and purified in Escherichia coli. Western Blot and ELISA assays were used to demonstrate the immunoreactivity of the recombinant N protein with the serum of 22 COVID-19 patients. We investigated further the response of the specific serum antibodies and cytokine production in BALB/c mice immunized with recombinant N protein by Western Blot and ELISA. RESULTS: The N protein had good immunoreactivity and the production of IgG antibody against N protein in COVID-19 patients was tightly correlated with disease severity. Furthermore, the N protein was used to immunize BALB/c mice to have elicited strong immune responses. Not only high levels of IgG antibody, but also cytokine-IFN-γ were produced in the N protein-immunized mice. Importantly, the N protein immunization induced a high level of IgM antibody produced in the mice. CONCLUSION: SARS-CoV-2 N protein shows a great big bundle of potentiality for developing a new generation of vaccines in fighting infection of SARS-CoV-2 and its variants.


Asunto(s)
COVID-19 , Vacunas , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , Citocinas , Humanos , Inmunoglobulina G , Ratones , Ratones Endogámicos BALB C , Proteínas de la Nucleocápside , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
11.
J Allergy Clin Immunol ; 147(5): 1855-1864.e9, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33385443

RESUMEN

BACKGROUND: Anaphylaxis is a severe allergic reaction that can be lethal if not treated adequately. The underlying molecular mechanisms responsible for the severity are mostly unknown. OBJECTIVE: This study is based on a clinical case of a patient with extremely severe anaphylaxis to paper wasp venom. This patient has a mutation in the KARS gene, which encodes lysyl-tRNA synthetase (LysRS), a moonlight protein with a canonical function in protein synthesis and a noncanonical function in antigen dependent-FcεRI activation in mast cells. In this study, the objective was to characterize the mutation at the molecular level. METHODS: Analysis of the KARS mutation was carried out using biochemical and functional approaches, cell transfection, Western blot, confocal microscopy, cell degranulation, prostaglandin D2 secretion, and proteases gene transcription. Structural analysis using molecular dynamics simulations and well-tempered metadynamics was also performed. RESULTS: The mutation found, P542R (proline was replaced by arginine at aminoacid 542), affects the location of the protein as we show in biochemical and structural analyses. The mutation resembles active LysRS and causes a constitutive activation of the microphthalmia transcription factor, which is involved in critical mast cell functions such as synthesis of mediators and granule biogenesis. Moreover, the structural analysis provides insights into how LysRS works in mast cell activation. CONCLUSIONS: A link between the aberrant LysRS-P542R function and mast cell-exacerbated activation with increase in proinflammatory mediator release after antigen-IgE-dependent response could be established.


Asunto(s)
Anafilaxia/genética , Lisina-ARNt Ligasa/genética , Adulto , Anafilaxia/inmunología , Animales , Mordeduras y Picaduras/complicaciones , Mordeduras y Picaduras/genética , Mordeduras y Picaduras/inmunología , Línea Celular , Humanos , Lisina-ARNt Ligasa/inmunología , Masculino , Mastocitos/inmunología , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/inmunología , Mutación , Ratas , Avispas
12.
Appl Intell (Dordr) ; 52(8): 8793-8809, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34764624

RESUMEN

The recently proposed L2-norm linear discriminant analysis criterion based on Bhattacharyya error bound estimation (L2BLDA) was an effective improvement over linear discriminant analysis (LDA) and was used to handle vector input samples. When faced with two-dimensional (2D) inputs, such as images, converting two-dimensional data to vectors, regardless of the inherent structure of the image, may result in some loss of useful information. In this paper, we propose a novel two-dimensional Bhattacharyya bound linear discriminant analysis (2DBLDA). 2DBLDA maximizes the matrix-based between-class distance, which is measured by the weighted pairwise distances of class means and minimizes the matrix-based within-class distance. The criterion of 2DBLDA is equivalent to optimizing the upper bound of the Bhattacharyya error. The weighting constant between the between-class and within-class terms is determined by the involved data that make the proposed 2DBLDA adaptive. The construction of 2DBLDA avoids the small sample size (SSS) problem, is robust, and can be solved through a simple standard eigenvalue decomposition problem. The experimental results on image recognition and face image reconstruction demonstrate the effectiveness of 2DBLDA.

13.
Plant J ; 104(5): 1301-1314, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32996244

RESUMEN

Although SQUAMOSA promoter-binding-like (SPL) transcription factors are important regulators of development in rice (Oryza sativa), prior assessments of the SPL family have been limited to single genes. A functional comparison across the full gene family in standardized genetic backgrounds has not been reported previously. Here, we demonstrate that the SPL gene family in rice is enriched due to the most recent whole genome duplication (WGD). Notably, 10 of 19 rice SPL genes (52%) cluster in four units that have persisted for at least 50 million years. We show that SPL gene grouping and retention following WGD is widespread in angiosperms, suggesting the conservatism and importance of this gene arrangement. We used Cas9 editing to generate transformation lines for all 19 SPL genes in a common set of backgrounds, and found that knockouts of 14 SPL genes exhibited defects in plant height, 10 exhibited defects in panicle size, and nine had altered grain lengths. We observed subfunctionalization of genes in the paleoduplicated pairs, but little evidence of neofunctionalization. Expression of OsSPL3 was negatively correlated with that of its closest neighbor in its synteny group, OsSPL4, and its sister paired gene, OsSPL12, in the opposing group. Nucleotide diversity was lower in eight of the nine singleton genes in domesticated rice, relative to wild rice, whereas the reverse was true for the paired genes. Together, these results provide functional information on eight previously unexamined OsSPL family members and suggest that paleoduplicate pair redundancy benefits plant survival and innovation.


Asunto(s)
Genoma de Planta , Familia de Multigenes , Oryza/genética , Proteínas de Plantas/genética , Secuencia de Bases , Sistemas CRISPR-Cas , Secuencia Conservada , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Sintenía , Factores de Transcripción/genética
14.
Phys Chem Chem Phys ; 23(10): 6162-6170, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33687033

RESUMEN

Grain boundary trap passivation in perovskite films has become one of the most effective strategies for suppressing the charge recombination and enhancing the photovoltaic performance of perovskite solar cells, whereas the relevant trap-state properties and the charge carrier dynamics need to be further clarified. In this work, the CH3NH3Cl (MACl) additive is introduced into the MAI:PbI2 precursor solution to obtain perovskite films comprising various grain sizes with distinct grain boundaries and trap-state properties. The influence of grain boundary traps passivated with the MACl additive on trap-state properties and charge carrier transport/recombination dynamics is systematically studied with time-resolved spectroscopic and transient photoelectric characterization. Specifically, the MACl amount determines the content of the PbI2 residual in the final perovskite, leading to photoluminescence quenching induced by charge transfer. The trap-state distribution result reveals that the deep-level traps at the grain boundaries as the main sources of charge recombination centers are dramatically passivated. Low-temperature photoluminescence spectroscopy distinguishes and compares the trap-state emission related to different perovskite phases. Transient photoelectric measurements including photovoltage decay and charge extraction further demonstrate that the boundary trap passivation can effectively promote charge transport and inhibit charge recombination in devices treated with the optimized MACl amount. As a result, the corresponding device possesses superior photovoltaic parameters to the control device. This work proposes a systematic understanding of the grain boundary trap passivation strategy and provides a new insight into the development of high-performance perovskite solar cells.

15.
Appl Microbiol Biotechnol ; 105(19): 7283-7293, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34505914

RESUMEN

Nasopharyngeal carcinoma (NPC) is consistently associated with Epstein-Barr virus (EBV) latent infection and is common in Southern China and Southeast Asia. The viral latent membrane proteins LMP1 and LMP2 are persistently expressed in NPC tissues; the cytoplasmic domain of LMP1 (LMP1 C-terminal) and LMP2A (LMP2A N-terminal) proteins is essential for maintenance of latency and can alter host cell signaling to facilitate tumor growth and progression. Thus, targeting LMP1 or LMP2 oncoprotein has been an increasing interest for diagnosis and targeted therapy of NPC. Affibody molecules, a new class of small-affinity engineered scaffold proteins, have demonstrated high potential for therapeutics, diagnostics, and biotechnological applications. More recently, radiolabelled HER2-specific affibody molecules have demonstrated to be useful in imaging of HER2 expressing tumor. In this study, we report three novel EBV LMP1 C-terminal (EBV LMP1-C) domain affibody molecules (ZLMP1-C15, ZLMP1-C114, and ZLMP1-C277) were selected by biopanning from a random-peptide displayed phage library and used for molecular imaging in tumor-bearing nude mice. Surface plasmon resonance (SPR), indirect immunofluorescence, and immunohistochemistry (IHC) clearly showed that all three selected affibody molecules have high affinity and specificity in binding to EBV LMP1 protein. Moreover, in vivo tumor imaging revealed that Dylight-755-labeled affibody molecules accumulated rapidly in tumor site after injection (1 h) and then were continuously maintained for 24 h in EBV-positive NPC xenograft mice model. In conclusion, our findings highlight the potential use of ZLMP1-C affibody molecules as tumor-specific molecular imaging agents of EBV-associated NPC.Key points• We screened three novel affibody molecules (ZLMP1-C15, ZLMP1-C114, and ZLMP1-C277) targeting EBV LMP1-C terminal domain• ZLMP1-C recognize the recombinant and native LMP1-C with high affinity and specificity• ZLMP1-C can be used for molecular imaging.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Animales , Infecciones por Virus de Epstein-Barr/diagnóstico por imagen , Herpesvirus Humano 4 , Ratones , Ratones Desnudos , Imagen Molecular , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico por imagen
16.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066544

RESUMEN

Anaphylaxis is a severe allergic reaction, rapid in onset, and can lead to fatal consequences if not promptly treated. The incidence of anaphylaxis has risen at an alarming rate in past decades and continues to rise. Therefore, there is a general interest in understanding the molecular mechanism that leads to an exacerbated response. The main effector cells are mast cells, commonly triggered by stimuli that involve the IgE-dependent or IgE-independent pathway. These signaling pathways converge in the release of proinflammatory mediators, such as histamine, tryptases, prostaglandins, etc., in minutes. The action and cell targets of these proinflammatory mediators are linked to the pathophysiologic consequences observed in this severe allergic reaction. While many molecules are involved in cellular regulation, the expression and regulation of transcription factors involved in the synthesis of proinflammatory mediators and secretory granule homeostasis are of special interest, due to their ability to control gene expression and change phenotype, and they may be key in the severity of the entire reaction. In this review, we will describe our current understanding of the pathophysiology of human anaphylaxis, focusing on the transcription factors' contributions to this systemic hypersensitivity reaction. Host mutation in transcription factor expression, or deregulation of their activity in an anaphylaxis context, will be updated. So far, the risk of anaphylaxis is unpredictable thus, increasing our knowledge of the molecular mechanism that leads and regulates mast cell activity will enable us to improve our understanding of how anaphylaxis can be prevented or treated.


Asunto(s)
Anafilaxia/metabolismo , Factores de Transcripción/metabolismo , Anafilaxia/genética , Animales , Humanos , Mediadores de Inflamación/metabolismo , Modelos Biológicos , Mutación/genética
17.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922606

RESUMEN

Recent research on mast cell biology has turned its focus on MRGPRX2, a new member of the Mas-related G protein-coupled subfamily of receptors (Mrgprs), originally described in nociceptive neurons of the dorsal root ganglia. MRGPRX2, a member of this group, is present not only in neurons but also in mast cells (MCs), specifically, and potentially in other cells of the immune system, such as basophils and eosinophils. As emerging new functions for this receptor are studied, a variety of both natural and pharmacologic ligands are being uncovered, linked to the ability to induce receptor-mediated MC activation and degranulation. The diversity of these ligands, characterized in their human, mice, or rat homologues, seems to match that of the receptor's interactions. Natural ligands include host defense peptides, basic molecules, and key neuropeptides such as substance P and vasointestinal peptide (known for their role in the transmission of pain and itch) as well as eosinophil granule-derived proteins. Exogenous ligands include MC secretagogues such as compound 48/80 and mastoparan, a component of bee wasp venom, and several peptidergic drugs, among which are members of the quinolone family, neuromuscular blocking agents, morphine, and vancomycin. These discoveries shed light on its capacity as a multifaceted participant in naturally occurring responses within immunity and neural stimulus perception, as in responses at the center of immune pathology. In host defense, the mice Mrgprb2 has been proven to aid mast cells in the detection of peptidic molecules from bacteria and in the release of peptides with antimicrobial activities and other immune mediators. There are several potential actions described for it in tissue homeostasis and repair. In the realm of pathologic response, there is evidence to suggest that this receptor is also involved in chronic inflammation. Furthermore, MRGPRX2 has been linked to the pathophysiology of non-IgE-mediated immediate hypersensitivity drug reactions. Different studies have shown its possible role in other allergic diseases as well, such as asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. In this review, we sought to cover its function in physiologic processes and responses, as well as in allergic and nonallergic immune disease.


Asunto(s)
Asma/patología , Hipersensibilidad a las Drogas/patología , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Animales , Asma/etiología , Asma/metabolismo , Hipersensibilidad a las Drogas/etiología , Hipersensibilidad a las Drogas/metabolismo , Humanos
18.
PLoS Genet ; 10(10): e1004589, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25340332

RESUMEN

Distal arthrogryposis type 2B (DA2B) is an important genetic disorder in humans. However, the mechanisms governing this disease are not clearly understood. In this study, we generated knock-in mice carrying a DA2B mutation (K175del) in troponin I type 2 (skeletal, fast) (TNNI2), which encodes a fast-twitch skeletal muscle protein. Tnni2K175del mice (referred to as DA2B mice) showed typical DA2B phenotypes, including limb abnormality and small body size. However, the current knowledge concerning TNNI2 could not explain the small body phenotype of DA2B mice. We found that Tnni2 was expressed in the osteoblasts and chondrocytes of long bone growth plates. Expression profile analysis using radii and ulnae demonstrated that Hif3a expression was significantly increased in the Tnni2K175del mice. Chromatin immunoprecipitation assays indicated that both wild-type and mutant tnni2 protein can bind to the Hif3a promoter using mouse primary osteoblasts. Moreover, we showed that the mutant tnni2 protein had a higher capacity to transactivate Hif3a than the wild-type protein. The increased amount of hif3a resulted in impairment of angiogenesis, delay in endochondral ossification, and decrease in chondrocyte differentiation and osteoblast proliferation, suggesting that hif3a counteracted hif1a-induced Vegf expression in DA2B mice. Together, our data indicated that Tnni2K175del mutation led to abnormally increased hif3a and decreased vegf in bone, which explain, at least in part, the small body size of Tnni2K175del mice. Furthermore, our findings revealed a new function of tnni2 in the regulation of bone development, and the study of gain-of-function mutation in Tnni2 in transgenic mice opens a new avenue to understand the pathological mechanism of human DA2B disorder.


Asunto(s)
Artrogriposis/genética , Desarrollo Óseo/genética , Factores de Transcripción/biosíntesis , Troponina I/genética , Animales , Proteínas Reguladoras de la Apoptosis , Artrogriposis/fisiopatología , Calcio/metabolismo , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Ratones , Contracción Muscular/genética , Mutación , Proteínas Represoras , Sarcómeros/patología , Factores de Transcripción/genética , Factor A de Crecimiento Endotelial Vascular/biosíntesis
19.
Zhonghua Yi Xue Za Zhi ; 93(17): 1335-40, 2013 May 07.
Artículo en Zh | MEDLINE | ID: mdl-24029485

RESUMEN

OBJECTIVE: To explore whether a tissue-engineered construct composed of autogenous endothelial cells, osteoblasts and a new bioresorbable nano-hydroxyapatite/recombinant human-like collagen/polylactic acid (nHA/RHLC/PLA) would enhance bone regeneration and repair femoral head defects in canine models. METHODS: The bone marrow stem cells (BMSCs) were isolated from bone marrow of canine ilium and cultured in Dulbecco's modified eagle medium:nutrient mixture F-12 culture media for 1 week and the second-generation BMSCs were further induced by osteogenic medium (1×10(-8) mol/L dexamethasone, 10 mmol/L B-sodium glycerophosphate and 50 µg/ml vitamin C) and by endothelial cell grow medium (vascular endothelial growth factor and basic fibroblast growth factor) for 14 days in vitro. Thus BMSCs were induced into ECs and OBs. After the second passage, cells were digested and collected.And cell density was adjusted to 1.0×10(6)/ml.The cells and nHA/RHLC/PLA scaffold were co-cultured for 2-4 hours then nHA/RHLC/PLA scaffold composites prepared. Cavity defects of 8 mm in diameter and 10 mm in height were made in femoral heads.The nHA/RHLC/PLA scaffold composited with ECs and osteoblasts (OBs) (group A) and composited with OBs (group B) were inserted into different defects while cell-free nHA/RHLC/PLA scaffold served as controls (group C). New bone formation and defect repair were evaluated at 3 and 6 months by radiographic examination, histology and bone histomorphometry. RESULTS: New bone formation was evident as early as 3 months in groups A, B and C.At 6 months, abundant bone tissue within defects was observed in group A. The control animals with cell-free scaffold showed less bone formation at both timepoints.The scaffold of nHA/RHLC/PLA was degraded and absorbed gradually with the formation of new bone tissues.Histology and bone histomorphometry further revealed significantly increased trabecular bones in group A compared with groups B and C at 6 months postimplantation (P < 0.01). CONCLUSION: More abundant new bone tissue may be found in the bone defect areas implanted with osteoblast-endotheliocyte composite than osteoblasts composite and scaffold materials only.ECs and osteoblasts derived from BMSC are ideal seed cells for repairing femoral head defects.


Asunto(s)
Regeneración Ósea , Necrosis de la Cabeza Femoral/cirugía , Andamios del Tejido , Animales , Materiales Biocompatibles , Células Cultivadas , Técnicas de Cocultivo , Colágeno , Perros , Durapatita , Células Endoteliales/citología , Osteoblastos/citología , Ingeniería de Tejidos , Cicatrización de Heridas
20.
Dig Liver Dis ; 55(1): 113-122, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35504805

RESUMEN

BACKGROUND: Glycosylation exhibits crucial effect on hepatocellular carcinoma (HCC) progression. Long non-coding RNAs (lncRNAs) are involved in multilevel regulation of gene transcription during tumor development. The purpose of this study is to clarify the potential mechanism that HOTAIR modulates hepatocellular carcinoma progression by activating FUT8/core-fucosylated Hsp90/MUC1/STAT3 feedback loop via JAK1/STAT3 cascade. METHODS: qRT-PCR was used to show the differential expression of genes. Functional experiments were used to measure the malignancy of HCC cells. ChIP and co-IP assays showed the directly interaction of the key molecules. Xenografts was conducted to show the in vivo effects. RESULTS: Upregulation of FUT8 showed closely correlation with HCC progression. Core-fucosylation of Hsp90 stabilized MUC1 binding to the downstream p-STAT3, which involved in the activation of JAK1/STAT3 cascade. STAT3 was identified as the regulator of FUT8 and MUC1 transcription, while FUT8 and MUC1 impacted STAT3 level both in nuclear and cytoplasm. HOTAIR recruited P300 to efficiently bind with STAT3. The transcript complex co-modulated the transcrption of FUT8 and MUC1. Moreover, highly HOTAIR expression also exhibited closely correlation with HCC progression. CONCLUSIONS: FUT8 triggered core-fucosylated-Hsp90/MUC1/P300-HOTAIR-STAT3 cascade via JAK1/STAT3 pathway, which exhibited as positive feedback loop during HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/patología , Glicosilación , Neoplasias Hepáticas/patología , Retroalimentación , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proliferación Celular , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Mucina-1/genética , Mucina-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA