Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Am Chem Soc ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054650

RESUMEN

We report herein chemical and electrochemical ammonia oxidation (AO) catalyzed by a Ru complex, [RuII(H2L)(pic)2]2+ [1, H2L = 6,6'-di(1H-pyrazol-3-yl)-2,2'-bipyridine, pic = 4-picoline], where H2L is a tetradentate ligand with a bipyridyl unit connected to two pyrazoles. 1 functions as an efficient electrocatalyst for the oxidation of NH3 to N2, with a low overpotential of 0.51 V vs Fc+/0 and a Faradaic efficiency of 96%. 1 also undergoes catalytic chemical AO using (4-BrPh)3N•+ as an oxidant, with a turnover number for N2 reaching 41. A novel binuclear complex, [RuIII(L)(pic)2(N2)RuIII(L)(pic)2]4+ (2), was isolated and structurally characterized in the catalytic chemical AO by 1. Complex 2 possesses a zigzag dianionic µ-hexazene unit where the N2 derived from ammonia oxidation is bonded to the pyrazoles, with an NN2-NN2 bond length of 1.3091(70) Å. 2 readily releases N2 upon treating with NH3. Based on experimental and DFT studies, in chemical AO the formation of an N-N bond is proposed to occur via bimolecular coupling of a ruthenium pyrazole imido intermediate to give 2; while in electrochemical AO the N-N bond is formed by nucleophilic attack of NH3 on the intermediate.

2.
J Am Chem Soc ; 145(46): 25195-25202, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37947126

RESUMEN

Visible-light-driven reduction of CO2 to both CO and formate (HCOO-) was achieved in acetonitrile solutions using a homobimetallic Cu bisquaterpyridine complex. In the presence of a weak acid (water) as coreactant, the reaction rate was enhanced, and a total of ca. 766 TON (turnover number) was reached for the CO2 reduction, with 60% selectivity for formate and 28% selectivity for CO, using Ru(phen)32+ as a sensitizer and amines as sacrificial electron donors. Mechanistic studies revealed that with the help of cooperativity between two Cu centers, a bridging hydride is generated in the presence of a proton source (water) and further reacts with CO2 to give HCOO-. A second product, CO, was also produced in a parallel competitive pathway upon direct coordination of CO2 to the reduced complex. Mechanistic studies further allowed comparison of the observed reactivity to the monometallic Cu quaterpyridine complex, which only produced CO, and to the related homobimetallic Co bisquaterpyridine complex, that has been previously shown to generate formate following a mechanism not involving the formation of an intermediate hydride species.

3.
Eur J Nutr ; 62(2): 965-976, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36334119

RESUMEN

PURPOSE: Postmenopausal osteoporosis (PMO) is usually managed by conventional drug treatment. However, prolonged use of these drugs cause side effects. Gut microbiota may be a potential target for treatment of PMO. This work was a three-month intervention trial aiming to evaluate the added effect of probiotics as adjunctive treatment for PMO. METHODS: Forty patients with PMO were randomized into probiotic (n = 20; received Bifidobacterium animalis subsp. lactis Probio-M8 [Probio-M8], calcium, calcitriol) and placebo (n = 20; received placebo material, calcium, calcitriol) groups. The bone mineral density of patients was measured at month 0 (0 M; baseline) and month 3 (3 M; after three-month intervention). Blood and fecal samples were collected 0 M and 3 M. Only 15 and 12 patients from Probio-M8 and placebo groups, respectively, provided complete fecal samples for gut microbiota analysis. RESULTS: No significant change was observed in the bone mineral density of patients at 3 M. Co-administering Probio-M8 improved the bone metabolism, reflected by an increased vitamin D3 level and decreased PTH and procalcitonin levels in serum at 3 M. Fecal metagenomic analysis revealed modest changes in the gut microbiome in both groups at 3 M. Interestingly, Probio-M8 co-administration affected the gut microbial interactive correlation network, particularly the short-chain fatty acid-producing bacteria. Probio-M8 co-administration significantly increased genes encoding some carbohydrate metabolism pathways (including ABC transporters, the phosphotransferase system, and fructose and mannose metabolism) and a choline-phosphate cytidylyltransferase. CONCLUSIONS: Co-administering Probio-M8 with conventional drugs/supplements was more efficacious than conventional drugs/supplements alone in managing PMO. Our study shed insights into the beneficial mechanism of probiotic adjunctive treatment. REGISTRATION NUMBER OF CLINICAL TRIAL: Chinese Clinical Trial Registry (identifier number: ChiCTR1800019268).


Asunto(s)
Bifidobacterium animalis , Microbioma Gastrointestinal , Osteoporosis Posmenopáusica , Probióticos , Femenino , Humanos , Osteoporosis Posmenopáusica/tratamiento farmacológico , Calcitriol , Calcio
4.
Small ; 16(29): e2001847, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32510861

RESUMEN

Electrochemical CO2 reduction (ECR) to value-added chemicals and fuels is regarded as an effective strategy to mitigate climate change caused by CO2 from excess consumption of fossil fuels. To achieve CO2 conversion with high faradaic efficiency, low overpotential, and excellent product selectivity, rational design and synthesis of efficient electrocatalysts is of significant importance, which dominates the development of ECR field. Individual organic molecules or inorganic catalysts have encountered a bottleneck in performance improvement owing to their intrinsic shortcomings. Very recently, organic-inorganic hybrid nanomaterials as electrocatalysts have exhibited high performance and interesting reaction processes for ECR due to the integration of the advantages of both heterogeneous and homogeneous catalytic processes, attracting widespread interest. In this work, the recent advances in designing various organic-inorganic hybrid nanomaterials at the atomic and molecular level for ECR are systematically summarized. Particularly, the reaction mechanism and structure-performance relationship of organic-inorganic hybrid nanomaterials toward ECR are discussed in detail. Finally, the challenges and opportunities toward controlled synthesis of advanced electrocatalysts are proposed for paving the development of the ECR field.

6.
J Am Chem Soc ; 138(30): 9413-6, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27443679

RESUMEN

The design of highly efficient and selective photocatalytic systems for CO2 reduction that are based on nonexpensive materials is a great challenge for chemists. The photocatalytic reduction of CO2 by [Co(qpy)(OH2)2](2+) (1) (qpy = 2,2':6',2″:6″,2‴-quaterpyridine) and [Fe(qpy)(OH2)2](2+) (2) have been investigated. With Ru(bpy)3(2+) as the photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as the sacrificial reductant in CH3CN/triethanolamine solution under visible-light excitation (blue light-emitting diode), a turnover number (TON) for CO as high as 2660 with 98% selectivity can be achieved for the cobalt catalyst. In the case of the iron catalyst, the TON was >3000 with up to 95% selectivity. More significantly, when Ru(bpy)3(2+) was replaced by the organic dye sensitizer purpurin, TONs of 790 and 1365 were achieved in N,N-dimethylformamide for the cobalt and iron catalysts, respectively.

7.
J Am Chem Soc ; 137(34): 10918-21, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26267016

RESUMEN

Molecular catalysis of carbon dioxide reduction using earth-abundant metal complexes as catalysts is a key challenge related to the production of useful products--the "solar fuels"--in which solar energy would be stored. A direct approach using sunlight energy as well as an indirect approach where sunlight is first converted into electricity could be used. A Co(II) complex and a Fe(III) complex, both bearing the same pentadentate N5 ligand (2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), were synthesized, and their catalytic activity toward CO2 reduction was investigated. Carbon monoxide was formed with the cobalt complex, while formic acid was obtained with the iron-based catalyst, thus showing that the catalysis product can be switched by changing the metal center. Selective CO2 reduction occurs under electrochemical conditions as well as photochemical conditions when using a photosensitizer under visible light excitation (λ > 460 nm, solvent acetonitrile) with the Co catalyst. In the case of the Fe catalyst, selective HCOOH production occurs at low overpotential. Sustained catalytic activity over long periods of time and high turnover numbers were observed in both cases. A catalytic mechanism is suggested on the basis of experimental results and preliminary quantum chemistry calculations.

8.
Yi Chuan ; 34(7): 907-18, 2012 Jul.
Artículo en Zh | MEDLINE | ID: mdl-22805218

RESUMEN

The phenomenon of conflicting gene trees has become a remarkable and difficult problem. Application of multiple genes has been a widespread practice to reconstruct phylogenies in phylogenetic studies. Enolase is a key glycolytic enzyme, The enzymes from a large variety of organisms, including archaebacteria, eubacteria and eukaryotes, were studied. We downloaded eno sequences from the genomes of bacteria and archaea that have been completely sequenced. The comprehensive homology search and phylogenetic analysis of the eno were used, and nineteen horizontally transferred genes were identified. The results of analysis showed lots of differences between the features of horizontal transferred genes and the ones of whole genomic genes, such as nucleotide composition, gene combination, codon usage bias, and selection pressure. These results reconfirmed that the horizontally transferred genes were exogenous. The result revealed that prokaryote eno genes were highly conserved, medium-sized, is a good material in the phylogenetic. This paper can provide a reference in study of life habit and evolutionary history of donor and receptor, and enolase structure and function.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Transferencia de Gen Horizontal , Fosfopiruvato Hidratasa/genética , Filogenia , Composición de Base , Codón , Genoma Bacteriano , ARN Ribosómico 16S , Análisis de Secuencia de ADN
9.
Chem Commun (Camb) ; 56(46): 6249-6252, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32373815

RESUMEN

The iron(ii) complex bearing the 2,2':6',2'':6'',2''':6''',2''''-quinquepyridine (qnpy) ligand, [Fe(qnpy)(H2O)2]2+, is a highly efficient and robust catalyst for photocatalytic reduction of CO2 to CO in aqueous acetonitrile solution. A turnover number (TON) for CO of up to 14 095 with 98% selectivity can be achieved using Ru(phen)3Cl2 (phen = 1,10-phenanthroline) as the photosensitizer and BIH (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole) as the sacrificial reductant in a CO2-saturated MeCN/H2O (1 : 1, v/v) solution under visible light irradiation. This Fe complex is state-of-the-art for CO2 visible-light-driven catalysis.

11.
ChemSusChem ; 10(20): 4009-4013, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-28840967

RESUMEN

The invention of efficient systems for the photocatalytic reduction of CO2 comprising earth-abundant metal catalysts is a promising approach for the production of solar fuels. One bottleneck is to design highly selective and robust molecular complexes that are able to transform the CO2 gas. The CuII quaterpyridine complex [Cu(qpy)]2+ (1) is found to be a highly efficient and selective catalyst for visible-light driven CO2 reduction in CH3 CN using [Ru(bpy)3 ]2+ (bpy: bipyridine) as photosensitizer and BIH/TEOA (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole/triethanolamine) as sacrificial reductant. The photocatalytic reaction is greatly enhanced by the presence of H2 O (1-4 % v/v), and a turnover number of >12 400 for CO production can be achieved with 97 % selectivity, which is among the highest of molecular 3d CO2 reduction catalysts. Results from Hg poisoning and dynamic light scattering experiments suggest that this photocatalyst is homogenous. To the best of our knowledge, 1 is the first example of molecular Cu-based catalyst for the photoreduction of CO2 .


Asunto(s)
Dióxido de Carbono/química , Monóxido de Carbono/química , Cobre/química , Compuestos Organometálicos/química , Procesos Fotoquímicos , Piridinas/química , Catálisis , Electroquímica , Oxidación-Reducción
12.
Nanoscale ; 4(8): 2633-9, 2012 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-22402765

RESUMEN

Pt-Pd bimetallic alloy nanostructures with highly selective morphologies such as cube, bar, flower, concave cube, and dendrite have been achieved through a facile one-pot solvothermal synthesis. The effects of shape-controllers (sodium dodecyl sulfate (SDS), ethylenediamine-tetraacetic acid disodium salt (EDTA-2Na), NaI) and solvents (water/DMF) on the morphologies were systematically investigated. The electrocatalytic activities of these Pt-Pd alloy nanostructures toward formic acid oxidation were tested. The results indicated that these alloy nanocrystals exhibited enhanced and shape-dependent electrocatalytic activity toward formic acid oxidation compared to commercial Pt black and Pt/C catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA