RESUMEN
Esophageal cancer (EC) is frequently considered a lethal malignancy and is often identified at a later stage. It is one of the major causes of cancer-related deaths globally. The conventional treatment methods like chemotherapy, radiotherapy, and surgery offer limited efficacy and poor clinical outcome with a less than 25% 5-year survival rate. The poor prognosis of EC persists despite the growth in the development of diagnostic and therapeutic modalities to treat EC. This underlines the need to elucidate the complex molecular mechanisms that drive esophageal oncogenesis. Apart from the role of the tumor microenvironment and its structural and cellular components in tumorigenesis, mounting evidence points towards the involvement of the esophageal microbiome, inflammation, and their cross-talk in promoting esophageal cancer. The current review summarizes recent research that delineates the underlying molecular mechanisms by which the microbiota and inflammation promote the pathophysiology of esophageal cancer, thus unraveling targets for potential therapeutic intervention.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Microbiota , Carcinogénesis , Carcinoma de Células Escamosas/patología , Transformación Celular Neoplásica , Humanos , Inflamación , Microambiente TumoralRESUMEN
Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.
Asunto(s)
Neoplasias Hematológicas , Mieloma Múltiple , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inteligencia Artificial , Neoplasias/terapia , Inmunoterapia Adoptiva , Antígenos de Neoplasias , Microambiente Tumoral , Tratamiento Basado en Trasplante de Células y TejidosRESUMEN
BACKGROUND: Osteosarcoma is a type of bone cancer that predominantly affects young individuals, including children and adolescents. The disease progresses through heterogeneous genetic alterations, and patients often develop pulmonary metastases even after the primary tumors have been surgically removed. Ubiquitin-specific peptidases (USPs) regulate several critical cellular processes, such as cell cycle progression, transcriptional activation, and signal transduction. Various studies have revealed the significance of USP37 in the regulation of replication stress and oncogenesis. METHODS: In this study, the Cancer Genome Atlas (TCGA) database was analyzed to investigate USP37 expression. RNA sequencing was utilized to assess the impact of USP37 overexpression and depletion on gene expression in osteosarcoma cells. Various molecular assays, including colony formation, immunofluorescence, immunoprecipitation, and DNA replication restart, were employed to examine the physical interaction between USP37 and PCNA, as well as its physiological effects in osteosarcoma cells. Additionally, molecular docking studies were conducted to gain insight into the nature of the interaction between USP37 and PCNA. Furthermore, immunohistochemistry was performed on archived tissue blocks from osteosarcoma patients to establish a correlation between USP37 and PCNA expression. RESULTS: Analysis of the TCGA database revealed that increased expression of USP37 was linked to decreased progression-free survival (PFS) in osteosarcoma patients. Next-generation sequencing analysis of osteosarcoma cells demonstrated that overexpression or knockdown of USP37 led to the expression of different sets of genes. USP37 overexpression provided a survival advantage, while its depletion heightened sensitivity to replication stress in osteosarcoma cells. USP37 was found to physically interact with PCNA, and molecular docking studies indicated that the interaction occurs through unique residues. In response to genotoxic stress, cells that overexpressed USP37 resolved DNA damage foci more quickly than control cells or cells in which USP37 was depleted. The expression of USP37 varied in archived osteosarcoma tissues, with intermediate expression seen in 52% of cases in the cohort examined. CONCLUSION: The results of this investigation propose that USP37 plays a vital role in promoting replication stress tolerance in osteosarcoma cells. The interaction between USP37 and PCNA is involved in the regulation of replication stress, and disrupting it could potentially trigger synthetic lethality in osteosarcoma. This study has expanded our knowledge of the mechanism through which USP37 regulates replication stress, and its potential as a therapeutic target in osteosarcoma merits additional exploration.
Asunto(s)
Neoplasias Óseas , Osteosarcoma , Niño , Humanos , Adolescente , Antígeno Nuclear de Célula en Proliferación , Endopeptidasas/genética , Endopeptidasas/metabolismo , Simulación del Acoplamiento Molecular , Proteasas Ubiquitina-Específicas , Osteosarcoma/genética , Neoplasias Óseas/genéticaRESUMEN
Preoperative malnutrition in patients with colorectal cancer is associated with several postoperative consequences and poorer prognosis. Currently, there is a lack of a universal screening tool to assess nutritional status, and intervention to treat preoperative malnutrition is often neglected. This review summarizes and compares preoperative screening and interventional tools to help providers optimize malnourished patients with colorectal cancer for surgery. We found that nutritional screenings, such as the Subjectibe Global Assessment, Patient-Generated Subjective Global Assessment, Prognostic Nutritional Index, Nutrition Risk Index, Malnutrition Universal Screening Tool, Nutrition Risk Screening 2002, Nutrition Risk Score, serum albumin, and prealbumin, have all effectively predicted postoperative outcome. Physicians should consider which of these tools best fits their needs based on the their mode of assessment, efficiency, and specified parameters. Additionally, preoperative nutritional support, such as trimodal prehabilitation, modified peripheral parenteral nutrition, and N-3 fatty acid and arginine supplementation, which have also benefited patients postoperatively, ought to be implemented appropriately according to their ease of execution. Given the high prevalence of preoperative malnutrition in patients undergoing surgery for colorectal cancer, it is essential that health care providers assess and treat this malnutrition to reduce postoperative complications and length of hospital stay, and to improve prognosis to augment a patient's quality of care.La malnutrition préopératoire chez les patients atteints d'un cancer colorectal est associée à plusieurs complications postopératoires et à un pronostic plus sombre. Il n'existe actuellement aucun outil universel d'évaluation du statut nutritionnel, et les mesures visant à corriger la malnutrition préopératoire font souvent défaut. La présente revue résume et compare les outils de dépistage et d'intervention préopératoires pour aider les professionnels à améliorer l'état des patients dénutris qui doivent subir une chirurgie pour le cancer colorectal. Nous avons constaté que le dépistage nutritionnel à l'aide de questionnaires tels que l'Évaluation globale subjective, l'Index nutritionnel pronostique, l'Outil universel de dépistage de la malnutrition, NRS 2002 (Nutrition Risk Screening 2002), l'évaluation du risque nutritionnel, et le dosage de l'albumine et de la préalbumine sériques, a permis de prédire avec justesse l'issue de la chirurgie. Les médecins devraient vérifier lequel de ces outils est le mieux adapté à leurs besoins selon leur modalité d'évaluation, leur efficience et autres paramètres spécifiques. Également, un soutien nutritionnel préopératoire, comme la préadaptation trimodale, la nutrition parentérale périphérique modifiée et les suppléments d'acides gras N-3 et d'arginine, qui ont aussi donné des résultats postopératoires favorables, devrait être appliqué selon sa facilité d'administration. Étant donné la forte prévalence de la malnutrition préopératoire chez les patients soumis à une chirurgie pour cancer colorectal, les professionnels de la santé se doivent d'évaluer et de corriger la malnutrition afin de prévenir les complications postopératoires, d'abréger la durée du séjour hospitalier, et d'améliorer ainsi le pronostic et la qualité des soins.
Asunto(s)
Neoplasias Colorrectales/cirugía , Desnutrición , Evaluación Nutricional , Cuidados Preoperatorios , Humanos , Hipoalbuminemia/sangre , Estado Nutricional , Periodo Preoperatorio , Albúmina Sérica/metabolismo , Resultado del TratamientoRESUMEN
Chimeric antigen receptor (CAR) T-cell therapy represents a significant advancement in cancer treatment, particularly for hematologic malignancies. Various cancer immunotherapy strategies are presently being explored, including cytokines, cancer vaccines, immune checkpoint inhibitors, immunomodulators monoclonal antibodies, etc. The therapy has shown impressive efficacy in treating conditions such as acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), and multiple myeloma, often leading to complete remission in refractory cases. However, the clinical application of CAR T-cell therapy is accompanied by challenges, notably severe side effects. Effective management of these adverse effects requires meticulous monitoring and prompt intervention, highlighting the critical role of nursing in this therapeutic process. Nurses play a crucial role in patient education, monitoring, symptom management, care coordination, and psychosocial support, ensuring safe and effective treatment. As research advances and new CAR T-cell therapies are developed, the role of nursing professionals remains pivotal in optimizing patient outcomes. The continued evolution of CAR T-cell therapy promises improved outcomes, with nursing professionals integral to its success.
RESUMEN
Lifelong neurogenesis endows the mouse olfactory system with a capacity for regeneration that is unique in the mammalian nervous system. Throughout life, olfactory sensory neurons (OSNs) are generated from olfactory epithelium (OE) stem cells in the nose, while the subventricular zone generates neuroblasts that migrate to the olfactory bulb (OB) and differentiate into multiple populations of inhibitory interneurons. Methimazole (MMZ) selectively ablates OSNs, but OE neurogenesis enables OSN repopulation and gradual recovery of OSN input to the OB within 6 weeks. However, it is not known how OB interneurons are affected by this loss and subsequent regeneration of OSN input following MMZ treatment. We found that dopaminergic neuron density was significantly reduced 7-14 days post-MMZ but recovered substantially at 35 days. The density of parvalbumin-expressing interneurons was unaffected by MMZ; however, their soma size was significantly reduced at 7-14 days post-MMZ, recovering by 35 days. Surprisingly, we found a transient increase in the density of calretinin-expressing neurons in the glomerular and external plexiform layers, but not the granule cell layer, 7 days post-MMZ. This could not be accounted for by increased neurogenesis but may result from increased calretinin expression. Together, our data demonstrate cell type- and layer-specific changes in OB interneuron density and morphology after MMZ treatment, providing new insight into the range of plasticity mechanisms employed by OB circuits during loss and regeneration of sensory input.
Asunto(s)
Interneuronas , Neurogénesis , Bulbo Olfatorio , Neuronas Receptoras Olfatorias , Animales , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones , Neuronas Receptoras Olfatorias/fisiología , Plasticidad Neuronal/fisiología , Metimazol/farmacología , Masculino , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/citología , Mucosa Olfatoria/citología , Ratones Endogámicos C57BL , Calbindina 2/metabolismoRESUMEN
Radiotherapy (RT) and immunotherapy (IT) are the powerful tools for cancer treatment which act through the stimulation of immune response, and evidence suggest that combinatorial actions of these therapies may augment each other's beneficial effect through complex synergistic mechanisms. These molecular strategies are designed to target rapidly dividing cancer cells by either directly or indirectly inducing DNA damage. However, when cells detect DNA damage, they activate a range of signalling pathways known as the DNA damage response (DDR) to repair. Strategies are being developed to interfere with the DDR pathways in cancer cells to ensure their damage-induced degeneration. The stability of a cell's genetic material is largely dependent on the efficacy of DNA repair and therefore, an in-depth understanding of DNA damages and repair mechanism(s) in cancer cells is important to develop a promising therapeutic strategies for ensuring the efficacy of damage-induced tumor cell death. In recent years, a wide range of small molecule drugs have been developed which are currently being employed to combat the DNA repair deficiencies associated with tumor cells. Sequential or concurrent use of these two modalities significantly enhances the anti-tumor response, however with a concurrent probability of increased incidence of symptomatic adverse effects. With advent of newer IT agents, and administration of higher doses of radiation per fraction, such effects are more difficult to predict owing to the paucity of randomized trial data. It is well established that anti cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4), anti- Programmed cell death protein 1(PD-1), anti-Programmed cell death one ligand 1 (PD-L1) can be safely administered with RT and many studies have demonstrated survival benefit with such combination for patients with metastatic malignancy. However, the biology of radioimmunotherapy (RT/IT) is still an open area where research need to be focused to determine optimum dosage specially the interaction of the RT/IT pathways to determine optimum dosing schedule. In the current article we have summarised the possible intracellular immunological events that might be triggered when RT and IT modalities are combined with the DDR antagonists and highlighted present clinical practices, outcome, and toxicity profile of this novel treatment strategy.
RESUMEN
Cervical cancer is still the leading cause of cancer mortality worldwide even after introduction of vaccine against Human papillomavirus (HPV), due to low vaccine coverage, especially in the developing world. Cervical cancer is primarily treated by Chemo/Radiotherapy, depending on the disease stage, with Carboplatin/Cisplatin-based drug regime. These drugs being non-specific, target rapidly dividing cells, including normal cells, so safer options are needed for lower off-target toxicity. Natural products offer an attractive option compared to synthetic drugs due to their well-established safety profile and capacity to target multiple oncogenic hallmarks of cancer like inflammation, angiogenesis, etc. In the current study, we investigated the effect of Bergenin (C-glycoside of 4-O-methylgallic acid), a natural polyphenol compound that is isolated from medicinal plants such as Bergenia crassifolia, Caesalpinia digyna, and Flueggea leucopyrus. Bergenin has been shown to have anti-inflammatory, anti-ulcerogenic, and wound healing properties but its anticancer potential has been realized only recently. We performed a proteomic analysis of cervical carcinoma cells treated with bergenin and found it to influence multiple hallmarks of cancers, including apoptosis, angiogenesis, and tumor suppressor proteins. It was also involved in many different cellular processes unrelated to cancer, as shown by our proteomic analysis. Further analysis showed bergenin to be a potent-angiogenic agent by reducing key angiogenic proteins like Galectin 3 and MMP-9 (Matrix Metalloprotease 9) in cervical carcinoma cells. Further understanding of this interaction was carried out using molecular docking analysis, which indicated MMP-9 has more affinity for bergenin as compared to Galectin-3. Cumulatively, our data provide novel insight into the anti-angiogenic mechanism of bergenin in cervical carcinoma cells by modulation of multiple angiogenic proteins like Galectin-3 and MMP-9 which warrant its further development as an anticancer agent in cervical cancer.
Asunto(s)
Benzopiranos , Proliferación Celular , Galectina 3 , Metaloproteinasa 9 de la Matriz , Neoplasias del Cuello Uterino , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Benzopiranos/farmacología , Femenino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Galectina 3/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Galectinas/metabolismo , Galectinas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células HeLa , Proteínas SanguíneasRESUMEN
Regulated cell division is one of the fundamental phenomena which is the basis of all life on earth. Even a single base pair mutation in DNA leads to the production of the dysregulated protein that can have catastrophic consequences. Cell division is tightly controlled and orchestrated by proteins called cyclins and cyclin-dependent kinase (CDKs), which serve as licensing factors during different phases of cell division. Dysregulated cell division is one of the most important hallmarks of cancer and is commonly associated with a mutation in cyclins and CDKs along with tumor suppressor proteins. Therefore, targeting the component of the cell cycle which leads to these characteristics would be an effective strategy for treating cancers. Specifically, Cyclin-dependent kinases (CDKs) involved in cell cycle regulation have been identified to be overexpressed in many cancers. Many studies indicate that oncogenesis occurs in cancerous cells by the overactivity of different CDKs, which impact cell cycle progression and checkpoint dysregulation which is responsible for development of tumor. The development of CDK inhibitors has emerged as a promising and novel approach for cancer treatment in both solid and hematological malignancies. Some of the novel CDK inhibitors have shown remarkable results in clinical trials, such as-Ribociclib®, Palbociclib® and Abemaciclib®, which are CDK4/6 inhibitors and have received FDA approval for the treatment of breast cancer. In this chapter, we discuss the molecular mechanism through which cyclins and CDKs regulate cell cycle progression and the emergence of cyclins and CDKs as rational targets in cancer. We also discuss recent advances in developing CDK inhibitors, which have emerged as a novel class of inhibitors, and their associated toxicities in recent years.
Asunto(s)
Neoplasias de la Mama , Quinasas Ciclina-Dependientes , Humanos , Femenino , Ciclo Celular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , CiclinasRESUMEN
Significant progress has been achieved in the realm of therapeutic interventions for multiple myeloma (MM), leading to transformative shifts in its clinical management. While conventional modalities such as surgery, radiotherapy, and chemotherapy have improved the clinical outcomes, the overarching challenge of effecting a comprehensive cure for patients afflicted with relapsed and refractory MM (RRMM) endures. Notably, adoptive cellular therapy, especially chimeric antigen receptor T-cell (CAR-T) therapy, has exhibited efficacy in patients with refractory or resistant B-cell malignancies and is now also being tested in patients with MM. Within this context, the B-cell maturation antigen (BCMA) has emerged as a promising candidate for CAR-T-cell antigen targeting in MM. Alternative targets include SLAMF7, CD38, CD19, the signaling lymphocyte activation molecule CS1, NKG2D, and CD138. Numerous clinical studies have demonstrated the clinical efficacy of these CAR-T-cell therapies, although longitudinal follow-up reveals some degree of antigenic escape. The widespread implementation of CAR-T-cell therapy is encumbered by several barriers, including antigenic evasion, uneven intratumoral infiltration in solid cancers, cytokine release syndrome, neurotoxicity, logistical implementation, and financial burden. This article provides an overview of CAR-T-cell therapy in MM and the utilization of BCMA as the target antigen, as well as an overview of other potential target moieties.
RESUMEN
Purpose: Several factors influence medical students to choose a specialty branch for post-graduate training, and it is important to understand them so that strategies can be made to make it more attractive and hence the shortage in the workforce can be addressed. This study aimed to identify the factors that influenced under-graduate medical students to choose ophthalmology as their specialty for post-graduate training. Methods: It was a descriptive, cross-sectional, questionnaire-based study, carried out among medical students at a tertiary academic institute in eastern India. In this survey tool, 25 questions were divided into different sections: demographic data, factors influencing the choice and perceptions about ophthalmology as a career option, and the impact of rotatory internship posting on the choice of subject. The various factors were then scored and indexed appropriately. Results: There were 515 participants. The median age was 23 years. The major influencing factor for choosing ophthalmology was "adequate time" (52.04%), and the discouraging factor was "steep learning curve" (58.64%). Age had an odds ratio of 0.781, showing that the lower the age, the higher the chances of being positively inclined toward ophthalmology as a career choice. Similarly, major deciding factors, perceptions, and experiences in ophthalmology had odds ratios of 1.841, 1.725, and 2.057, respectively, showing a positive inclination. Conclusion: The study states that a steep learning curve, personal attitudes, and misconceptions may dissuade the students from taking this subject, but adequate clinical exposure and experience, as well as role models during the internship, can create a positive impact on career choice.
Asunto(s)
Internado y Residencia , Oftalmología , Estudiantes de Medicina , Adulto , Selección de Profesión , Estudios Transversales , Humanos , Oftalmología/educación , Encuestas y Cuestionarios , Adulto JovenRESUMEN
Protein ubiquitination is one of the most crucial posttranslational modifications responsible for regulating the stability and activity of proteins involved in homeostatic cellular function. Inconsistencies in the ubiquitination process may lead to tumorigenesis. Ubiquitin-specific peptidases are attractive therapeutic targets in different cancers and are being evaluated for clinical development. Ubiquitin-specific peptidase 37 (USP37) is one of the least studied members of the USP family. USP37 controls numerous aspects of oncogenesis, including stabilizing many different oncoproteins. Recent work highlights the role of USP37 in stimulating the epithelial-mesenchymal transition and metastasis in lung and breast cancer by stabilizing SNAI1 and stimulating the sonic hedgehog pathway, respectively. Several aspects of USP37 biology in cancer cells are yet unclear and are an active area of research. This review emphasizes the importance of USP37 in cancer and how identifying its molecular targets and signalling networks in various cancer types can help advance cancer therapeutics.
Asunto(s)
Endopeptidasas/metabolismo , Oncogenes/genética , Proteasas Ubiquitina-Específicas/metabolismo , Transición Epitelial-Mesenquimal , Humanos , Transducción de SeñalRESUMEN
The DNA and protein complex known as chromatin is subject to posttranslational modifications (PTMs) that regulate cellular functions such that PTM dysregulation can lead to disease, including cancer. One critical PTM is acetylation/deacetylation, which is being investigated as a means to develop targeted cancer therapies. The histone acetyltransferase (HAT) family of proteins performs histone acetylation. In humans, MOF (hMOF), a member of the MYST family of HATs, acetylates histone H4 at lysine 16 (H4K16ac). MOF-mediated acetylation plays a critical role in the DNA damage response (DDR) and embryonic stem cell development. Functionally, MOF is found in two distinct complexes: NSL (nonspecific lethal) in humans and MSL (male-specific lethal) in flies. The NSL complex is also able to acetylate additional histone H4 sites. Dysregulation of MOF activity occurs in multiple cancers, including ovarian cancer, medulloblastoma, breast cancer, colorectal cancer, and lung cancer. Bioinformatics analysis of KAT8, the gene encoding hMOF, indicated that it is highly overexpressed in kidney tumors as part of a concerted gene coexpression program that can support high levels of chromosome segregation and cell proliferation. The linkage between MOF and tumor proliferation suggests that there are additional functions of MOF that remain to be discovered.