Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 538(7625): 344-349, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27602946

RESUMEN

Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Azetidinas/uso terapéutico , Descubrimiento de Drogas , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Animales , Antimaláricos/administración & dosificación , Antimaláricos/uso terapéutico , Compuestos de Azabiciclo/administración & dosificación , Compuestos de Azabiciclo/síntesis química , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Azetidinas/administración & dosificación , Azetidinas/efectos adversos , Azetidinas/farmacología , Citosol/enzimología , Modelos Animales de Enfermedad , Femenino , Hígado/efectos de los fármacos , Hígado/parasitología , Macaca mulatta/parasitología , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Masculino , Ratones , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Compuestos de Fenilurea/administración & dosificación , Compuestos de Fenilurea/síntesis química , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Plasmodium falciparum/citología , Plasmodium falciparum/enzimología , Seguridad
2.
Proc Natl Acad Sci U S A ; 116(4): 1414-1419, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30617067

RESUMEN

Onchocerciasis and lymphatic filariasis are two neglected tropical diseases that together affect ∼157 million people and inflict severe disability. Both diseases are caused by parasitic filarial nematodes with elimination efforts constrained by the lack of a safe drug that can kill the adult filaria (macrofilaricide). Previous proof-of-concept human trials have demonstrated that depleting >90% of the essential nematode endosymbiont bacterium, Wolbachia, using antibiotics, can lead to permanent sterilization of adult female parasites and a safe macrofilaricidal outcome. AWZ1066S is a highly specific anti-Wolbachia candidate selected through a lead optimization program focused on balancing efficacy, safety and drug metabolism/pharmacokinetic (DMPK) features of a thienopyrimidine/quinazoline scaffold derived from phenotypic screening. AWZ1066S shows superior efficacy to existing anti-Wolbachia therapies in validated preclinical models of infection and has DMPK characteristics that are compatible with a short therapeutic regimen of 7 days or less. This candidate molecule is well-positioned for onward development and has the potential to make a significant impact on communities affected by filariasis.


Asunto(s)
Antibacterianos/farmacología , Wolbachia/efectos de los fármacos , Animales , Filariasis Linfática/tratamiento farmacológico , Filariasis Linfática/microbiología , Femenino , Masculino , Ratones , Ratones SCID , Oncocercosis/tratamiento farmacológico , Oncocercosis/microbiología , Pirimidinas/farmacología , Quinazolinas/farmacología
3.
Parasite Immunol ; 42(10): e12769, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32592180

RESUMEN

E6020 is a synthetic agonist of Toll-like receptor-4 (TLR4). The purpose of this study was to evaluate the effect of different doses of E6020-SE on Trypanosoma cruzi-specific immune responses and its ability to confer protection against acute lethal infection in mice. Forty female BALB/c were infected with 500 trypomastigotes of T cruzi H1 strain, divided into four groups (n = 10) and treated at 7- and 14-day post-infection (dpi) with different doses of E6020-SE or PBS (control). Survival was followed for 51 days, mice were euthanized and hearts were collected to evaluate parasite burden, inflammation and fibrosis. We found significantly higher survival and lower parasite burdens in mice injected with E6020-SE at all doses compared to the control group. However, E6020-SE treatment did not significantly reduce cardiac inflammation or fibrosis. On the other hand, E6020-SE modulated Th1 and Th2 cytokines, decreasing IFN-γ and IL-4 in a dose-dependent manner after stimulation with parasite antigens. We conclude that E6020-SE alone increased survival by decreasing cardiac parasite burdens in BALB/c mice acutely infected with T cruzi but failed to prevent cardiac damage. Our results suggest that for optimal protection, a vaccine antigen is necessary to balance and orient a protective immune response.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Fosfolípidos/uso terapéutico , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Enfermedad de Chagas/inmunología , Citocinas/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Trypanosoma cruzi/inmunología
4.
Nature ; 497(7450): 498-502, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23636320

RESUMEN

There is a pressing need to develop alternatives to annual influenza vaccines and antiviral agents licensed for mitigating influenza infection. Previous studies reported that acute lung injury caused by chemical or microbial insults is secondary to the generation of host-derived, oxidized phospholipid that potently stimulates Toll-like receptor 4 (TLR4)-dependent inflammation. Subsequently, we reported that Tlr4(-/-) mice are highly refractory to influenza-induced lethality, and proposed that therapeutic antagonism of TLR4 signalling would protect against influenza-induced acute lung injury. Here we report that therapeutic administration of Eritoran (also known as E5564)-a potent, well-tolerated, synthetic TLR4 antagonist-blocks influenza-induced lethality in mice, as well as lung pathology, clinical symptoms, cytokine and oxidized phospholipid expression, and decreases viral titres. CD14 and TLR2 are also required for Eritoran-mediated protection, and CD14 directly binds Eritoran and inhibits ligand binding to MD2. Thus, Eritoran blockade of TLR signalling represents a novel therapeutic approach for inflammation associated with influenza, and possibly other infections.


Asunto(s)
Antivirales/farmacología , Disacáridos/farmacología , Disacáridos/uso terapéutico , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Fosfatos de Azúcar/farmacología , Fosfatos de Azúcar/uso terapéutico , Receptor Toll-Like 4/antagonistas & inhibidores , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/prevención & control , Animales , Antivirales/uso terapéutico , Citocinas/genética , Citocinas/inmunología , Disacáridos/metabolismo , Femenino , Ligandos , Receptores de Lipopolisacáridos/metabolismo , Antígeno 96 de los Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Fosfatos de Azúcar/metabolismo , Análisis de Supervivencia , Factores de Tiempo , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/inmunología
5.
Infect Immun ; 86(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29311242

RESUMEN

Chagas disease affects 6 to 7 million people worldwide, resulting in significant disease burdens and health care costs in countries of endemicity. Chemotherapeutic treatment is restricted to two parasiticidal drugs, benznidazole and nifurtimox. Both drugs are highly effective during acute disease but are only minimally effective during chronic disease and fraught with significant adverse clinical effects. In experimental models, vaccines can be used to induce parasite-specific balanced TH1/TH2 immune responses that effectively reduce parasite burdens and associated inflammation while minimizing adverse effects. The objective of this study was to determine the feasibility of vaccine-linked chemotherapy for reducing the amount of benznidazole required to significantly reduce blood and tissue parasite burdens. In this study, we were able to achieve a 4-fold reduction in the amount of benznidazole required to significantly reduce blood and tissue parasite burdens by combining the low-dose benznidazole with a recombinant vaccine candidate, Tc24 C4, formulated with a synthetic Toll-like 4 receptor agonist, E6020, in a squalene oil-in-water emulsion. Additionally, vaccination induced a robust parasite-specific balanced TH1/TH2 immune response. We concluded that vaccine-linked chemotherapy is a feasible option for advancement to clinical use for improving the tolerability and efficacy of benznidazole.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/inmunología , Nitroimidazoles/uso terapéutico , Tripanocidas/uso terapéutico , Enfermedad Aguda , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Cardiomiopatía Chagásica/tratamiento farmacológico , Cardiomiopatía Chagásica/inmunología , Cardiomiopatía Chagásica/parasitología , Cardiomiopatía Chagásica/patología , Enfermedad de Chagas/parasitología , Citocinas/metabolismo , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Inmunohistoquímica , Nitroimidazoles/farmacología , Carga de Parásitos , Vacunas Antiprotozoos/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Tripanocidas/farmacología , Trypanosoma cruzi/inmunología , Vacunación
6.
Mol Pharmacol ; 85(3): 429-40, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24342772

RESUMEN

The discovery that circulating nucleic acid-containing complexes in the serum of autoimmune lupus patients can stimulate B cells and plasmacytoid dendritic cells via Toll-like receptors 7 and 9 suggested that agents that block these receptors might be useful therapeutics. We identified two compounds, AT791 {3-[4-(6-(3-(dimethylamino)propoxy)benzo[d]oxazol-2-yl)phenoxy]-N,N-dimethylpropan-1-amine} and E6446 {6-[3-(pyrrolidin-1-yl)propoxy)-2-(4-(3-(pyrrolidin-1-yl)propoxy)phenyl]benzo[d]oxazole}, that inhibit Toll-like receptor (TLR)7 and 9 signaling in a variety of human and mouse cell types and inhibit DNA-TLR9 interaction in vitro. When administered to mice, these compounds suppress responses to challenge doses of cytidine-phosphate-guanidine (CpG)-containing DNA, which stimulates TLR9. When given chronically in spontaneous mouse lupus models, E6446 slowed development of circulating antinuclear antibodies and had a modest effect on anti-double-stranded DNA titers but showed no observable impact on proteinuria or mortality. We discovered that the ability of AT791 and E6446 to inhibit TLR7 and 9 signaling depends on two properties: weak interaction with nucleic acids and high accumulation in the intracellular acidic compartments where TLR7 and 9 reside. Binding of the compounds to DNA prevents DNA-TLR9 interaction in vitro and modulates signaling in vivo. Our data also confirm an earlier report that this same mechanism may explain inhibition of TLR7 and 9 signaling by hydroxychloroquine (Plaquenil; Sanofi-Aventis, Bridgewater, NJ), a drug commonly prescribed to treat lupus. Thus, very different structural classes of molecules can inhibit endosomal TLRs by essentially identical mechanisms of action, suggesting a general mechanism for targeting this group of TLRs.


Asunto(s)
Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Bibliotecas de Moléculas Pequeñas/farmacocinética , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 7/genética , Receptor Toll-Like 9/antagonistas & inhibidores , Receptor Toll-Like 9/genética , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Doxorrubicina/farmacología , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tiorredoxinas/farmacología , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Proc Natl Acad Sci U S A ; 108(9): 3689-94, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21303985

RESUMEN

Excessive release of proinflammatory cytokines by innate immune cells is an important component of the pathogenic basis of malaria. Proinflammatory cytokines are a direct output of Toll-like receptor (TLR) activation during microbial infection. Thus, interference with TLR function is likely to render a better clinical outcome by preventing their aberrant activation and the excessive release of inflammatory mediators. Herein, we describe the protective effect and mechanism of action of E6446, a synthetic antagonist of nucleic acid-sensing TLRs, on experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA. We show that in vitro, low doses of E6446 specifically inhibited the activation of human and mouse TLR9. Tenfold higher concentrations of this compound also inhibited the human TLR8 response to single-stranded RNA. In vivo, therapy with E6446 diminished the activation of TLR9 and prevented the exacerbated cytokine response observed during acute Plasmodium infection. Furthermore, severe signs of ECM, such as limb paralysis, brain vascular leak, and death, were all prevented by oral treatment with E6446. Hence, we provide evidence that supports the involvement of nucleic acid-sensing TLRs in malaria pathogenesis and that interference with the activation of these receptors is a promising strategy to prevent deleterious inflammatory responses that mediate pathogenesis and severity of malaria.


Asunto(s)
Hidrocarburos Aromáticos/farmacología , Malaria Cerebral/prevención & control , Malaria Cerebral/terapia , Ácidos Nucleicos/metabolismo , Receptores Toll-Like/antagonistas & inhibidores , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Humanos , Hidrocarburos Aromáticos/química , Inflamación/complicaciones , Inflamación/patología , Lipopolisacáridos/farmacología , Malaria Cerebral/inducido químicamente , Malaria Cerebral/parasitología , Ratones , Ratones Endogámicos C57BL , Plasmodium chabaudi/efectos de los fármacos , Plasmodium chabaudi/fisiología , Choque Séptico/inducido químicamente , Choque Séptico/complicaciones , Receptores Toll-Like/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38924387

RESUMEN

AWZ1066S has been developed as a potential treatment for the neglected tropical diseases lymphatic filariasis and onchocerciasis. AWZ1066S targets the Wolbachia bacterial endosymbiont present in the causative nematode parasites. This phase 1, first-in-human study aimed to assess the safety and pharmacokinetics of AWZ1066S in healthy human participants. In a randomized double-blind, placebo-controlled, single ascending dose study, healthy adults received a single oral dose of AWZ1066S (or placebo) and were followed up for 10 days. The planned single doses of AWZ1066S ranged from 100 to 1600 mg, and each dose was administered to a cohort of 8 participants (6 AWZ1066S and 2 placebo). In total 30 people participated, 18 (60%) female, median age 30.0 years (minimum 20, maximum 61). The cohorts administered 100, 200, 300, and 400 mg of AWZ1066S progressed unremarkably. After single 700-mg doses all 4 participants developed symptoms of acute gastritis and transient increases in liver enzymes. The severity of these adverse events ranged from mild to severe, with 1 participant needing hospital admission. Pharmacokinetic analysis indicated that AWZ1066S is rapidly absorbed with predictable pharmacokinetics. In conclusion, safety concerns prevented this study from reaching the human exposures needed for AWZ1066S to be clinically effective against lymphatic filariasis and onchocerciasis.

9.
Front Microbiol ; 15: 1346068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38362501

RESUMEN

Lymphatic filariasis and onchocerciasis are two major neglected tropical diseases that are responsible for causing severe disability in 50 million people worldwide, whilst veterinary filariasis (heartworm) is a potentially lethal parasitic infection of companion animals. There is an urgent need for safe, short-course curative (macrofilaricidal) drugs to eliminate these debilitating parasite infections. We investigated combination treatments of the novel anti-Wolbachia azaquinazoline small molecule, AWZ1066S, with benzimidazole drugs (albendazole or oxfendazole) in up to four different rodent filariasis infection models: Brugia malayi-CB.17 SCID mice, B. malayi-Mongolian gerbils, B. pahangi-Mongolian gerbils, and Litomosoides sigmodontis-Mongolian gerbils. Combination treatments synergised to elicit threshold (>90%) Wolbachia depletion from female worms in 5 days of treatment, using 2-fold lower dose-exposures of AWZ1066S than monotherapy. Short-course lowered dose AWZ1066S-albendazole combination treatments also delivered partial adulticidal activities and/or long-lasting inhibition of embryogenesis, resulting in complete transmission blockade in B. pahangi and L. sigmodontis gerbil models. We determined that short-course AWZ1066S-albendazole co-treatment significantly augmented the depletion of Wolbachia populations within both germline and hypodermal tissues of B. malayi female worms and in hypodermal tissues in male worms, indicating that anti-Wolbachia synergy is not limited to targeting female embryonic tissues. Our data provides pre-clinical proof-of-concept that sub-seven-day combinations of rapid-acting novel anti-Wolbachia agents with benzimidazole anthelmintics are a promising curative and transmission-blocking drug treatment strategy for filarial diseases of medical and veterinary importance.

10.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37503013

RESUMEN

Background: Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac disease. However, the liver is important for both controlling parasite burdens and metabolizing drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage. We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However, the impact of this treatment on liver health is unknown. Therefore, we evaluated several markers of liver health after treatment with low dose BNZ plus the vaccine therapy in comparison to a curative dose of BNZ. Methodology: Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately 70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/kg BNZ, 25µg Tc24-C4 protein/5µg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine, or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translocation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum. Results: Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH. Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of BTG2 while low BNZ plus vaccine had no impact. Conclusions: These data confirm toxicity associated with curative doses of BNZ and suggest that the dose sparing low BNZ plus vaccine treatment better preserves liver health.

11.
PLoS Negl Trop Dis ; 17(11): e0011519, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37988389

RESUMEN

BACKGROUND: Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac disease. However, the liver is important for both controlling parasite burdens and metabolizing drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage. We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However, the impact of this treatment on liver health is unknown. Therefore, we evaluated several markers of liver health after treatment with low dose BNZ plus the vaccine therapy in comparison to a curative dose of BNZ. METHODOLOGY: Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately 70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/kg BNZ, 25µg Tc24-C4 protein/ 5µg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine, or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translocation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum. RESULTS: Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH. Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of BTG2 while low BNZ plus vaccine had no impact. CONCLUSIONS: These data confirm toxicity associated with curative doses of BNZ and suggest that while dose sparing low BNZ plus vaccine treatment does not reduce parasite burdens, it better preserves liver health.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Vacunas , Femenino , Animales , Ratones , Hepatomegalia/tratamiento farmacológico , Infección Persistente , PPAR alfa/farmacología , PPAR alfa/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/prevención & control , Enfermedad de Chagas/parasitología , Tripanocidas/farmacología
12.
Front Cell Infect Microbiol ; 13: 1106315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844399

RESUMEN

Introduction: Chagas disease, caused by chronic infection with the protozoan parasite Trypanosoma cruzi, affects 6-7 million people worldwide. The major clinical manifestation of Chagas disease is chronic Chagasic cardiomyopathy (CCC), which encompasses a spectrum of symptoms including arrhythmias, hypertrophy, dilated cardiomyopathy, heart failure, and sudden death. Current treatment is limited to two antiparasitic drugs, benznidazole (BNZ) and nifurtimox, but both have limited efficacy to halt the progression of CCC. We developed a vaccine-linked chemotherapy strategy using our vaccine consisting of recombinant Tc24-C4 protein and a TLR-4 agonist adjuvant in a stable squalene emulsion, in combination with low dose benznidazole treatment. We previously demonstrated in acute infection models that this strategy parasite specific immune responses, and reduced parasite burdens and cardiac pathology. Here, we tested our vaccine-linked chemotherapy strategy in a mouse model of chronic T. cruzi infection to evaluate the effect on cardiac function. Methods: Female BALB/c mice infected with 500 blood form T. cruzi H1 strain trypomastigotes were treated beginning 70 days after infection with a low dose of BNZ and either low or high dose of vaccine, in both sequential and concurrent treatments streams. Control mice were untreated, or administered only one treatment. Cardiac health was monitored throughout the course of treatment by echocardiography and electrocardiograms. Approximately 8 months after infection, endpoint histopathology was performed to measure cardiac fibrosis and cellular infiltration. Results: Vaccine-linked chemotherapy improved cardiac function as evidenced by amelioration of altered left ventricular wall thickness, left ventricular diameter, as well as ejection fraction and fractional shortening by approximately 4 months of infection, corresponding to two months after treatment was initiated. At study endpoint, vaccine-linked chemotherapy reduced cardiac cellular infiltration, and induced significantly increased antigen specific IFN-γ and IL-10 release from splenocytes, as well as a trend toward increased IL-17A. Discussion: These data suggest that vaccine-linked chemotherapy ameliorates changes in cardiac structure and function induced by infection with T. cruzi. Importantly, similar to our acute model, the vaccine-linked chemotherapy strategy induced durable antigen specific immune responses, suggesting the potential for a long lasting protective effect. Future studies will evaluate additional treatments that can further improve cardiac function during chronic infection.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Vacunas , Femenino , Animales , Ratones , Infección Persistente , Enfermedad de Chagas/parasitología , Corazón , Proteínas Recombinantes
13.
Res Sq ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711878

RESUMEN

Post-infectious conditions, where clinical symptoms fail to resolve even after pathogen clearance, present major health burdens. However, the mechanisms involved remain poorly understood. In Chagas disease (CD), caused by the parasite Trypanosoma cruzi, antiparasitic agents can clear T. cruzi but late-stage treatment does not improve clinical cardiac outcomes. In this study, we revealed differential metabolic trajectories of cardiac regions during T. cruzi infection, matching sites of clinical symptoms. Incomplete, region-specific, cardiac metabolic restoration was observed in animals treated with the antiparasitic benznidazole, even though parasites were successfully cleared. In contrast, superior metabolic restoration was observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy (Tc24-C4 T. cruzi flagellar protein and TLR4 agonist adjuvant), even though parasite burden reduction was lower. Overall, these results provide a mechanism to explain prior clinical treatment failures in CD and to test novel candidate treatment regimens. More broadly, our results demonstrate a link between persistent metabolic perturbation and post-infectious conditions, with broad implications for our understanding of post-infectious disease sequelae.

14.
PLoS Negl Trop Dis ; 16(9): e0010258, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36095001

RESUMEN

BACKGROUND: Chagas disease (CD) is caused by Trypanosoma cruzi and affects 6-7 million people worldwide. Approximately 30% of chronic patients develop chronic chagasic cardiomyopathy (CCC) after decades. Benznidazole (BNZ), one of the first-line chemotherapy used for CD, induces toxicity and fails to halt the progression of CCC in chronic patients. The recombinant parasite-derived antigens, including Tc24, Tc24-C4, TSA-1, and TSA-1-C4 with Toll-like receptor 4 (TLR-4) agonist-adjuvants reduce cardiac parasite burdens, heart inflammation, and fibrosis, leading us to envision their use as immunotherapy together with BNZ. Given genetic immunization (DNA vaccines) encoding Tc24 and TSA-1 induce protective immunity in mice and dogs, we propose that immunization with the corresponding recombinant proteins offers an alternative and feasible strategy to develop these antigens as a bivalent human vaccine. We hypothesized that a low dose of BNZ in combination with a therapeutic vaccine (TSA-1-C4 and Tc24-C4 antigens formulated with a synthetic TLR-4 agonist-adjuvant, E6020-SE) given during early chronic infection, could prevent cardiac disease progression and provide antigen-specific T cell immunity. METHODOLOGY/ PRINCIPAL FINDINGS: We evaluated the therapeutic vaccine candidate plus BNZ (25 mg/kg/day/7 days) given on days 72 and 79 post-infection (p.i) (early chronic phase). Fibrosis, inflammation, and parasite burden were quantified in heart tissue at day 200 p.i. (late chronic phase). Further, spleen cells were collected to evaluate antigen-specific CD4+ and CD8+ T cell immune response, using flow cytometry. We found that vaccine-linked BNZ treated mice had lower cardiac fibrosis compared to the infected untreated control group. Moreover, cells from mice that received the immunotherapy had higher stimulation index of antigen-specific CD8+Perforin+ T cells as well as antigen-specific central memory T cells compared to the infected untreated control. CONCLUSIONS: Our results suggest that the bivalent immunotherapy together with BNZ treatment given during early chronic infection protects BALB/c mice against cardiac fibrosis progression and activates a strong CD8+ T cell response by in vitro restimulation, evidencing the induction of a long-lasting T. cruzi-immunity.


Asunto(s)
Enfermedad de Chagas , Vacunas Antiprotozoos , Trypanosoma cruzi , Vacunas de ADN , Adyuvantes Inmunológicos , Animales , Enfermedad de Chagas/tratamiento farmacológico , Perros , Fibrosis , Humanos , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Nitroimidazoles , Perforina , Proteínas Recombinantes , Receptor Toll-Like 4 , Trypanosoma cruzi/genética , Vacunas Combinadas/uso terapéutico
15.
EBioMedicine ; 80: 104065, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35598441

RESUMEN

BACKGROUND: SJ733, a newly developed inhibitor of P. falciparum ATP4, has a favorable safety profile and rapid antiparasitic effect but insufficient duration to deliver a single-dose cure of malaria. We investigated the safety, tolerability, and pharmacokinetics of a multidose SJ733 regimen and a single-dose pharmacoboost approach using cobicistat to inhibit CYP3A4, thereby increasing exposure. METHODS: Two multidose unboosted cohorts (n = 9) (SJ733, 300 mg and 600 mg daily for 3 days) followed by three single-dose boosted cohorts combining SJ733 (n = 18) (75-, 300-, or 600-mg single dose) with cobicistat (150-mg single dose) as a pharmacokinetic booster were evaluated in healthy volunteers (ClinicalTrials.gov: NCT02661373). FINDINGS: All participants tolerated SJ733 well, with no serious adverse events (AEs), dose-limiting toxicity, or clinically significant electrocardiogram or laboratory test findings. All reported AEs were Grade 1, clinically insignificant, and considered unlikely or unrelated to SJ733. Compared to unboosted cohorts, the SJ733/cobicistat-boosted cohorts showed a median increase in area under the curve and maximum concentration of 3·9 × and 2·6 ×, respectively, and a median decrease in the ratio of the major CYP3A-produced metabolite SJ506 to parent drug of 4·6 × . Incorporating these data in a model of parasite dynamics indicated that a 3-day regimen of SJ733/cobicistat (600 mg/150 mg daily) relative to a single 600-mg dose ± cobicistat would increase parasite clearance from 106 to 1012 parasites/µL. INTERPRETATION: The multidose and pharmacoboosted approaches to delivering SJ733 were well-tolerated and significantly increased drug exposure and prediction of cure. This study supports the further development of SJ733 and demonstrates an innovative pharmacoboost approach for an antimalarial. FUNDING: Global Health Innovative Technology Fund, Medicines for Malaria Venture, National Institutes of Health, and American Lebanese Syrian Associated Charities.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Malaria , Antimaláricos/efectos adversos , Cobicistat/uso terapéutico , Compuestos Heterocíclicos de 4 o más Anillos , Humanos , Isoquinolinas , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum
16.
Sci Rep ; 11(1): 3222, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547365

RESUMEN

Chagas disease resulting from Trypanosoma cruzi infection leads to a silent, long-lasting chronic neglected tropical disease affecting the poorest and underserved populations around the world. Antiparasitic treatment with benznidazole does not prevent disease progression or death in patients with established cardiac disease. Our consortium is developing a therapeutic vaccine based on the T. cruzi flagellar-derived antigen Tc24-C4 formulated with a Toll-like receptor 4 agonist adjuvant, to complement existing chemotherapy and improve treatment efficacy. Here we demonstrate that therapeutic treatment of acutely infected mice with a reduced dose of benznidazole concurrently with vaccine treatment - also known as "vaccine-linked chemotherapy"-induced a TH17 like immune response, with significantly increased production of antigen specific IL-17A, IL-23 and IL-22, and CD8 + T lymphocytes, as well as significantly increased T. cruzi specific IFNγ-producing CD4 + T lymphocytes. Significantly reduced cardiac inflammation, fibrosis, and parasite burdens and improved survival were achieved by vaccine-linked chemotherapy and individual treatments. Importantly, low dose treatments were comparably efficacious to high dose treatments, demonstrating potential dose sparing effects. We conclude that through induction of TH17 immune responses vaccine-linked chemotherapeutic strategies could bridge the tolerability and efficacy gaps of current drug treatment in Chagasic patients.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Interleucina-17/inmunología , Nitroimidazoles/uso terapéutico , Vacunas Antiprotozoos/uso terapéutico , Tripanocidas/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Animales , Enfermedad de Chagas/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Trypanosoma cruzi/inmunología
17.
J Pharmacol Exp Ther ; 335(1): 23-31, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20627998

RESUMEN

E6201 [(3S,4R,5Z,8S,9S,11E)-14-(ethylamino)-8,9,16-trihydroxy-3,4-dimethyl-3,4,9,10-tetrahydro-1H-2-benzoxacyclotetradecine-1,7(8H)-dione)] is a novel anti-inflammatory agent that has potent inhibitory effects on the production of proinflammatory cytokines from leukocytes and antiproliferative activity on keratinocytes. To characterize the in vivo pharmacological activity of E6201, topically administered E6201 was evaluated in several different animal models of dermatitis. E6201 formulated as an ointment or cream showed dose-dependent inhibition of croton oil-induced acute edema formation and neutrophil infiltration into mouse skin. In addition, E6201 cream inhibited the 1-fluoro-2,4-dinitrobenzene-induced contact hypersensitivity reaction mediated by T cells in mice. In this model, E6201 cream also suppressed the migration of neutrophils and lymphocytes into the inflammatory site. Pretreatment with E6201 cream attenuated phorbol-12 myristate 13-acetate-induced ornithine decarboxylase activity, a marker of proliferation in epidermis. Furthermore, E6201 ointment showed inhibitory effects on both mezerein-induced and interleukin (IL)-23-induced epidermal hyperplasia. E6201 also suppressed T cell receptor-stimulated IL-17 production from human T cells. These results indicate that topically administered E6201 may be a useful agent for the prevention and treatment of cutaneous inflammatory and hyperproliferative diseases such as psoriasis.


Asunto(s)
Erupciones por Medicamentos/patología , Lactonas/farmacología , Quinasa 1 de Quinasa de Quinasa MAP/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Administración Tópica , Animales , Antineoplásicos Fitogénicos , Aceite de Crotón , Dinitrofluorobenceno , Diterpenos , Hiperplasia/inducido químicamente , Hiperplasia/patología , Indicadores y Reactivos , Interleucina-17/biosíntesis , Interleucina-23/toxicidad , Lactonas/administración & dosificación , Masculino , Ratones , Ratones Endogámicos BALB C , Ornitina Descarboxilasa/biosíntesis , Ornitina Descarboxilasa/metabolismo , Peroxidasa/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Psoriasis/inducido químicamente , Psoriasis/patología , Piel/patología , Linfocitos T/fisiología , Acetato de Tetradecanoilforbol/farmacología
18.
Bioorg Med Chem Lett ; 20(10): 3155-7, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20399648

RESUMEN

Inspired by natural product, LL-Z1640-2, clinical candidate, E6201 (22) was discovered in a medicinal chemistry effort through total synthesis. The modification on C14-position to N-alkyl substitution showed to be potent in vitro and orally active in vivo in anti-inflammatory assays.


Asunto(s)
Antiinflamatorios/química , Lactonas/química , Administración Oral , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacocinética , Descubrimiento de Drogas , Lactonas/síntesis química , Lactonas/farmacocinética , Ratones , Relación Estructura-Actividad
19.
Bioorg Med Chem Lett ; 20(10): 3047-9, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20427182

RESUMEN

The potent in vitro lead compound, ER-803064 (2), a MEK1 and MEKK1 inhibitor inspired from natural product LL-Z1640-2 (f152A1), was further optimized to improve in vitro and in vivo potency. The modifications on C14 position led to discovery of the lead compounds 28 and 29, which regained full in vitro potency of f152A1 and showed higher in vivo potency by iv administration.


Asunto(s)
Antiinflamatorios/química , Lactonas/química , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacología , Descubrimiento de Drogas , Lactonas/síntesis química , Lactonas/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/metabolismo , Relación Estructura-Actividad
20.
Int Health ; 13(Suppl 1): S39-S43, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33349878

RESUMEN

World Health Assembly Resolution 50.29, adopted in 1997, committed the World Health Organization (WHO) and its member states to eliminate lymphatic filariasis (LF) as a public health problem. In 2000, to support this ambitious goal and the health ministries in the >70 LF-endemic countries, the Global Programme to Eliminate Lymphatic Filariasis (GPELF) was created. The resulting WHO elimination strategy consists of two main components: to stop the spread of infection by interrupting transmission and to alleviate the suffering of affected populations (by controlling morbidity). The GPELF has brought together a broad global partnership of public and private actors, including three pharmaceutical companies with headquarters in three different continents. The medicine donations programmes from GlaxoSmithKline, MSD (trade name of Merck & Co., Kenilworth, NJ, USA) and Eisai have enabled significant achievements during the first 20 y of the GPELF and are positioned to provide essential contributions to the GPELF's goals for the next decade. As we celebrate the progress towards LF elimination during the GPELF's first 20 y, this article reflects on the factors that led to the creation of the three donation programmes, the contributions these programmes have made and some lessons learned along the way. We close by emphasizing our continued commitments to LF elimination and perspectives on the next decade.


Asunto(s)
Filariasis Linfática , Filaricidas , Filariasis Linfática/tratamiento farmacológico , Filariasis Linfática/prevención & control , Filaricidas/uso terapéutico , Salud Global , Humanos , Salud Pública , Organización Mundial de la Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA