Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Tissue Res ; 371(2): 309-323, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29018970

RESUMEN

Andersen's syndrome (AS) is a rare autosomal disorder that has been defined by the triad of periodic paralysis, cardiac arrhythmia, and developmental anomalies. AS has been directly linked to over 40 different autosomal dominant negative loss-of-function mutations in the KCNJ2 gene, encoding for the tetrameric strong inward rectifying K+ channel KIR2.1. While KIR2.1 channels have been suggested to contribute to setting the resting membrane potential (RMP) and to control the duration of the action potential (AP) in skeletal and cardiac muscle, the mechanism by which AS mutations produce such complex pathophysiological symptoms is poorly understood. Thus, we use an adenoviral transduction strategy to study in vivo subcellular distribution of wild-type (WT) and AS-associated mutant KIR2.1 channels in mouse skeletal muscle. We determined that WT and D71V AS mutant KIR2.1 channels are localized to the sarcolemma and the transverse tubules (T-tubules) of skeletal muscle fibers, while the ∆314-315 AS KIR2.1 mutation prevents proper trafficking of the homo- or hetero-meric channel complexes. Whole-cell voltage-clamp recordings in individual skeletal muscle fibers confirmed the reduction of inwardly rectifying K+ current (IK1) after transduction with ∆314-315 KIR2.1 as compared to WT channels. Analysis of skeletal muscle function revealed reduced force generation during isometric contraction as well as reduced resistance to muscle fatigue in extensor digitorum longus muscles transduced with AS mutant KIR2.1. Together, these results suggest that KIR2.1 channels may be involved in the excitation-contraction coupling process required for proper skeletal muscle function. Our findings provide clues to mechanisms associated with periodic paralysis in AS.


Asunto(s)
Síndrome de Andersen/genética , Técnicas de Silenciamiento del Gen , Músculo Esquelético/patología , Mutación/genética , Canales de Potasio de Rectificación Interna/genética , Adenoviridae/metabolismo , Síndrome de Andersen/patología , Síndrome de Andersen/fisiopatología , Animales , Células COS , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Activación del Canal Iónico , Contracción Isométrica , Ratones , Fatiga Muscular , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/fisiopatología
2.
Hum Mol Genet ; 21(22): 4922-9, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22918120

RESUMEN

Primary aldosteronism (PA, autonomous aldosterone production from the adrenal cortex) causes the most common form of secondary arterial hypertension (HT), which is also the most common curable form of HT. Recent studies have highlighted an important role of mutations in genes encoding potassium channels in the pathogenesis of PA, both in human disease and in animal models. Here, we have exploited the unique features of the hyperaldosteronemic phenotype of Kcnk3 null mice, which is dependent on sexual hormones, to identify genes whose expression is modulated in the adrenal gland according to the dynamic hyperaldosteronemic phenotype of those animals. Genetic inactivation of one of the genes identified by our strategy, dickkopf-3 (Dkk3), whose expression is increased by calcium influx into adrenocortical cells, in the Kcnk3 null background results in the extension of the low-renin, potassium-rich diet insensitive hyperaldosteronemic phenotype to the male sex. Compound Kcnk3/Dkk3 animals display an increased expression of Cyp11b2, the rate-limiting enzyme for aldosterone biosynthesis in the adrenal zona glomerulosa (ZG). Our data show that Dkk3 can act as a modifier gene in a mouse model for altered potassium channel function and suggest its potential involvement in human PA syndromes.


Asunto(s)
Corteza Suprarrenal/metabolismo , Aldosterona/biosíntesis , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Corteza Suprarrenal/patología , Animales , Calcio/metabolismo , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Silenciador del Gen , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Masculino , Ratones , Ratones Noqueados , Fenotipo
3.
EMBO J ; 28(9): 1308-18, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19279663

RESUMEN

The sensation of cold or heat depends on the activation of specific nerve endings in the skin. This involves heat- and cold-sensitive excitatory transient receptor potential (TRP) channels. However, we show here that the mechano-gated and highly temperature-sensitive potassium channels of the TREK/TRAAK family, which normally work as silencers of the excitatory channels, are also implicated. They are important for the definition of temperature thresholds and temperature ranges in which excitation of nociceptor takes place and for the intensity of excitation when it occurs. They are expressed with thermo-TRP channels in sensory neurons. TRAAK and TREK-1 channels control pain produced by mechanical stimulation and both heat and cold pain perception in mice. Expression of TRAAK alone or in association with TREK-1 controls heat responses of both capsaicin-sensitive and capsaicin-insensitive sensory neurons. Together TREK-1 and TRAAK channels are important regulators of nociceptor activation by cold, particularly in the nociceptor population that is not activated by menthol.


Asunto(s)
Frío , Calor , Canales de Potasio de Dominio Poro en Tándem/fisiología , Canales de Potasio/fisiología , Sensación Térmica/fisiología , Animales , Células Cultivadas , Electrofisiología , Ganglios Espinales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Dolor , Canales de Potasio/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Sensación Térmica/genética
4.
EMBO J ; 27(1): 179-87, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18034154

RESUMEN

TASK1 (KCNK3) and TASK3 (KCNK9) are two-pore domain potassium channels highly expressed in adrenal glands. TASK1/TASK3 heterodimers are believed to contribute to the background conductance whose inhibition by angiotensin II stimulates aldosterone secretion. We used task1-/- mice to analyze the role of this channel in adrenal gland function. Task1-/- exhibited severe hyperaldosteronism independent of salt intake, hypokalemia, and arterial 'low-renin' hypertension. The hyperaldosteronism was fully remediable by glucocorticoids. The aldosterone phenotype was caused by an adrenocortical zonation defect. Aldosterone synthase was absent in the outer cortex normally corresponding to the zona glomerulosa, but abundant in the reticulo-fasciculata zone. The impaired mineralocorticoid homeostasis and zonation were independent of the sex in young mice, but were restricted to females in adults. Patch-clamp experiments on adrenal cells suggest that task3 and other K+ channels compensate for the task1 absence. Adrenal zonation appears as a dynamic process that even can take place in adulthood. The striking changes in the adrenocortical architecture in task1-/- mice are the first demonstration of the causative role of a potassium channel in development/differentiation.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Homeostasis/genética , Mineralocorticoides/antagonistas & inhibidores , Mineralocorticoides/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Canales de Potasio de Dominio Poro en Tándem/genética , Glándulas Suprarrenales/patología , Aldosterona/sangre , Aldosterona/metabolismo , Animales , Femenino , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Potasio/sangre , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Renina/sangre
5.
Nat Neurosci ; 9(9): 1134-41, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16906152

RESUMEN

Depression is a devastating illness with a lifetime prevalence of up to 20%. The neurotransmitter serotonin or 5-hydroxytryptamine (5-HT) is involved in the pathophysiology of depression and in the effects of antidepressant treatments. However, molecular alterations that underlie the pathology or treatment of depression are still poorly understood. The TREK-1 protein is a background K+ channel regulated by various neurotransmitters including 5-HT. In mice, the deletion of its gene (Kcnk2, also called TREK-1) led to animals with an increased efficacy of 5-HT neurotransmission and a resistance to depression in five different models and a substantially reduced elevation of corticosterone levels under stress. TREK-1-deficient (Kcnk2-/-) mice showed behavior similar to that of naive animals treated with classical antidepressants such as fluoxetine. Our results indicate that alterations in the functioning, regulation or both of the TREK-1 channel may alter mood, and that this particular K+ channel may be a potential target for new antidepressants.


Asunto(s)
Trastorno Depresivo/fisiopatología , Eliminación de Gen , Canales de Potasio de Dominio Poro en Tándem/fisiología , Análisis de Varianza , Animales , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Trastorno Depresivo/genética , Trastorno Depresivo/prevención & control , Resistencia a Medicamentos/genética , Fluoxetina/farmacología , Genotipo , Ratones , Ratones Noqueados , Fenotipo , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Canales de Potasio de Dominio Poro en Tándem/genética , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Serotonina/metabolismo , Transmisión Sináptica/efectos de los fármacos
6.
J Neurosci ; 24(5): 1005-12, 2004 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-14762118

RESUMEN

pH variations in the retina are thought to be involved in the fine-tuning of visual perception. We show that both photoreceptors and neurons of the mouse retina express the H+-gated cation channel subunits acid-sensing ion channel 2a (ASIC2a) and ASIC2b. Inactivation of the ASIC2 gene in mice leads to an increase in the rod electroretinogram a- and b-waves and thus to an enhanced gain of visual transduction. ASIC2 knock-out mice are also more sensitive to light-induced retinal degeneration. We suggest that ASIC2 is a negative modulator of rod phototransduction, and that functional ASIC2 channels are beneficial for the maintenance of retinal integrity.


Asunto(s)
Canales Iónicos/metabolismo , Luz/efectos adversos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Retina/fisiología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/prevención & control , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Animales , Apoptosis/genética , Western Blotting , Fragmentación del ADN/genética , Canales de Sodio Degenerina , Electrorretinografía/efectos de la radiación , Canales Epiteliales de Sodio , Hibridación in Situ , Canales Iónicos/genética , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Células Fotorreceptoras/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Retina/patología , Retina/efectos de la radiación , Degeneración Retiniana/etiología , Degeneración Retiniana/patología , Canales de Sodio/genética
7.
J Neurosci ; 22(3): 1010-9, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11826129

RESUMEN

Serotonin is a major component of the inflammatory chemical milieu and contributes to the pain of tissue injury via an action on multiple receptor subtypes. Here we studied mice after genetic or pharmacological disruption of the 5-HT(3) receptor, an excitatory serotonin-gated ion channel. We demonstrate that tissue injury-induced persistent, but not acute, nociception is significantly reduced after functional elimination of this receptor subtype. Specifically, in the setting of tissue injury, the 5-HT(3) receptor mediates activation of nociceptors but does not contribute to injury-associated edema. This result is explained by the localization of 5-HT(3) receptor transcripts to a previously uncharacterized subset of myelinated and unmyelinated afferents, few of which express the proinflammatory neuropeptide substance P. Finally, we provide evidence that central serotonergic circuits modulate nociceptive transmission via a facilitatory action at spinal 5-HT(3) receptors. We conclude that activation of both peripheral and central 5-HT(3) receptors is pronociceptive and that the contribution of peripheral 5-HT(3) receptors involves a novel complement of primary afferent nociceptors.


Asunto(s)
Fibras Nerviosas Mielínicas/metabolismo , Nociceptores/metabolismo , Dolor/metabolismo , Receptores de Serotonina/metabolismo , Animales , Autorradiografía , Conducta Animal/fisiología , Células Cultivadas , Ratones , Ratones Endogámicos , Ratones Mutantes , Fibras Nerviosas/metabolismo , Nociceptores/citología , Dolor/genética , Dimensión del Dolor , Subunidades de Proteína , Ensayo de Unión Radioligante , Receptores de Serotonina/deficiencia , Receptores de Serotonina/genética , Receptores de Serotonina 5-HT3 , Serotonina/metabolismo , Células Madre/citología , Células Madre/metabolismo , Transfección
8.
J Gen Physiol ; 122(2): 177-90, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12860925

RESUMEN

Several papers reported the role of TASK2 channels in cell volume regulation and regulatory volume decrease (RVD). To check the possibility that the TASK2 channel modulates the RVD process in kidney, we performed primary cultures of proximal convoluted tubules (PCT) and distal convoluted tubules (DCT) from wild-type and TASK2 knockout (KO) mice. In KO mice, the TASK2 coding sequence was in part replaced by the lac-Z gene. This allows for the precise localization of TASK2 in kidney sections using beta-galactosidase staining. TASK2 was only localized in PCT cells. K+ currents were analyzed by the whole-cell clamp technique with 125 mM K-gluconate in the pipette and 140 mM Na-gluconate in the bath. In PCT cells from wild-type mice, hypotonicity induced swelling-activated K+ currents insensitive to 1 mM tetraethylammonium, 10 nM charybdotoxin, and 10 microM 293B, but blocked by 500 microM quinidine and 10 microM clofilium. These currents were increased in alkaline pH and decreased in acidic pH. In PCT cells from TASK2 KO, swelling-activated K+ currents were completely impaired. In conclusion, the TASK2 channel is expressed in kidney proximal cells and could be the swelling-activated K+ channel responsible for the cell volume regulation process during osmolyte absorptions in the proximal tubules.


Asunto(s)
Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Potenciales de la Membrana/fisiología , Ósmosis/fisiología , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio/metabolismo , Animales , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Soluciones Hipotónicas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Presión Osmótica , Canales de Potasio/deficiencia
9.
EMBO Rep ; 8(4): 354-9, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17347672

RESUMEN

The TWIK related K+ channel TREK1 is an important member of the class of two-pore-domain K+ channels. It is a background K+ channel and is regulated by hormones, neurotransmitters, intracellular pH and mechanical stretch. This work shows that TREK1 is present both in mesenteric resistance arteries and in skin microvessels. It is particularly well expressed in endothelial cells. Deletion of TREK1 in mice leads to an important alteration in vasodilation of mesenteric arteries induced by acetylcholine and bradykinin. Iontophoretic delivery of acetylcholine and bradykinin in the skin of TREK1+/+ and TREK1-/- mice also shows the important role of TREK1 in cutaneous endothelium-dependent vasodilation. The vasodilator response to local pressure application is also markedly decreased in TREK1-/- mice, mimicking the decreased response to pressure observed in diabetes. Deletion of TREK1 is associated with a marked alteration in the efficacy of the G-protein-coupled receptor-associated cascade producing NO that leads to major endothelial dysfunction.


Asunto(s)
Presión Sanguínea/genética , Endotelio Vascular/fisiología , Arterias Mesentéricas/fisiología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Vasodilatación/genética , Acetilcolina/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Bradiquinina/farmacología , Capilares/química , Capilares/efectos de los fármacos , Endotelio Vascular/química , Eliminación de Gen , Arterias Mesentéricas/química , Arterias Mesentéricas/efectos de los fármacos , Ratones , Ratones Mutantes , Óxido Nítrico/metabolismo , Canales de Potasio de Dominio Poro en Tándem/análisis , Canales de Potasio de Dominio Poro en Tándem/genética , Presión , Piel/irrigación sanguínea
10.
EMBO J ; 25(24): 5864-72, 2006 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-17110924

RESUMEN

TREK channels are unique among two-pore-domain K(+) channels. They are activated by polyunsaturated fatty acids (PUFAs) including arachidonic acid (AA), phospholipids, mechanical stretch and intracellular acidification. They are inhibited by neurotransmitters and hormones. TREK-1 knockout mice have impaired PUFA-mediated neuroprotection to ischemia, reduced sensitivity to volatile anesthetics and altered perception of pain. Here, we show that the A-kinase-anchoring protein AKAP150 is a constituent of native TREK-1 channels. Its binding to a key regulatory domain of TREK-1 transforms low-activity outwardly rectifying currents into robust leak conductances insensitive to AA, stretch and acidification. Inhibition of the TREK-1/AKAP150 complex by Gs-coupled receptors such as serotonin 5HT4sR and noradrenaline beta2AR is as extensive as for TREK-1 alone, but is faster. Inhibition of TREK-1/AKAP150 by Gq-coupled receptors such as serotonin 5HT2bR and glutamate mGluR5 is much reduced when compared to TREK-1 alone. The association of AKAP150 with TREK channels integrates them into a postsynaptic scaffold where both G-protein-coupled membrane receptors (as demonstrated here for beta2AR) and TREK-1 dock simultaneously.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ácido Araquidónico/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Proteínas Adaptadoras Transductoras de Señales/análisis , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Perros , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Oocitos , Canales de Potasio de Dominio Poro en Tándem/química , Unión Proteica , Estructura Terciaria de Proteína , Proteómica , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Superficie Celular/metabolismo , Regulación hacia Arriba/genética , Xenopus
11.
EMBO J ; 25(11): 2368-76, 2006 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-16675954

RESUMEN

The TREK-1 channel is a temperature-sensitive, osmosensitive and mechano-gated K+ channel with a regulation by Gs and Gq coupled receptors. This paper demonstrates that TREK-1 qualifies as one of the molecular sensors involved in pain perception. TREK-1 is highly expressed in small sensory neurons, is present in both peptidergic and nonpeptidergic neurons and is extensively colocalized with TRPV1, the capsaicin-activated nonselective ion channel. Mice with a disrupted TREK-1 gene are more sensitive to painful heat sensations near the threshold between anoxious warmth and painful heat. This phenotype is associated with the primary sensory neuron, as polymodal C-fibers were found to be more sensitive to heat in single fiber experiments. Knockout animals are more sensitive to low threshold mechanical stimuli and display an increased thermal and mechanical hyperalgesia in conditions of inflammation. They display a largely decreased pain response induced by osmotic changes particularly in prostaglandin E2-sensitized animals. TREK-1 appears as an important ion channel for polymodal pain perception and as an attractive target for the development of new analgesics.


Asunto(s)
Nociceptores/metabolismo , Dolor/metabolismo , Percepción/fisiología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Ganglios Espinales/citología , Hibridación in Situ , Ratones , Ratones Noqueados , Fibras Nerviosas Amielínicas/metabolismo , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Dimensión del Dolor , Técnicas de Placa-Clamp , Canales de Potasio de Dominio Poro en Tándem/genética , ARN Mensajero/metabolismo
12.
EMBO Rep ; 6(7): 642-8, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15976821

RESUMEN

TREK-1 (KCNK2) is a K(2P) channel that is highly expressed in fetal neurons. This K(+) channel is opened by a variety of stimuli, including membrane stretch and cellular lipids. Here, we show that the expression of TREK-1 markedly alters the cytoskeletal network and induces the formation of actin- and ezrin-rich membrane protrusions. The genetic inactivation of TREK-1 significantly alters the growth cone morphology of cultured embryonic striatal neurons. Cytoskeleton remodelling is crucially dependent on the protein kinase A phosphorylation site S333 and the interactive proton sensor E306, but is independent of channel permeation. Conversely, the actin cytoskeleton tonically represses TREK-1 mechano-sensitivity. Thus, the dialogue between TREK-1 and the actin cytoskeleton might influence both synaptogenesis and neuronal electrogenesis.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Neuronas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Silenciador del Gen , Activación del Canal Iónico , Mecanotransducción Celular , Ratones , Ratones Noqueados , Mutación , Neuronas/química , Neuronas/citología , Fosfoproteínas/metabolismo , Fosforilación , Canales de Potasio de Dominio Poro en Tándem/análisis , Canales de Potasio de Dominio Poro en Tándem/genética , Seudópodos/metabolismo , Transfección
13.
Proc Natl Acad Sci U S A ; 101(21): 8215-20, 2004 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-15141089

RESUMEN

The acid- and volume-sensitive TASK2 K+ channel is strongly expressed in renal proximal tubules and papillary collecting ducts. This study was aimed at investigating the role of TASK2 in renal bicarbonate reabsorption by using the task2 -/- mouse as a model. After backcross to C57BL6, task2 -/- mice showed an increased perinatal mortality and, in adulthood, a reduced body weight and arterial blood pressure. Patch-clamp experiments on proximal tubular cells indicated that TASK2 was activated during HCO3- transport. In control inulin clearance measurements, task2 -/- mice showed normal NaCl and water excretion. During i.v. NaHCO3 perfusion, however, renal Na+ and water reabsorption capacity was reduced in -/- animals. In conscious task2 -/- mice, blood pH, HCO3- concentration, and systemic base excess were reduced but urinary pH and HCO3- were increased. These data suggest that task2 -/- mice exhibit metabolic acidosis caused by renal loss of HCO3-. Both in vitro and in vivo results demonstrate the specific coupling of TASK2 activity to HCO3- transport through external alkalinization. The consequences of the task2 gene inactivation in mice are reminiscent of the clinical manifestations seen in human proximal renal tubular acidosis syndrome.


Asunto(s)
Acidosis Tubular Renal/genética , Acidosis Tubular Renal/fisiopatología , Bicarbonatos/metabolismo , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio/deficiencia , Acidosis Tubular Renal/sangre , Acidosis Tubular Renal/orina , Animales , Bicarbonatos/orina , Transporte Biológico , Células Cultivadas , Estado de Conciencia , Eliminación de Gen , Riñón/fisiopatología , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Canales de Potasio/genética , Canales de Potasio/metabolismo , Sodio/orina , Orina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA