Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Genes Dev ; 33(3-4): 221-235, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30692206

RESUMEN

Approximately 15% of cancers use homologous recombination for alternative lengthening of telomeres (ALT). How the initiating genomic lesions invoke homology-directed telomere synthesis remains enigmatic. Here, we show that distinct dependencies exist for telomere synthesis in response to replication stress or DNA double-strand breaks (DSBs). RAD52 deficiency reduced spontaneous telomeric DNA synthesis and replication stress-associated recombination in G2, concomitant with telomere shortening and damage. However, viability and proliferation remained unaffected, suggesting that alternative telomere recombination mechanisms compensate in the absence of RAD52. In agreement, RAD52 was dispensable for DSB-induced telomere synthesis. Moreover, a targeted CRISPR screen revealed that loss of the structure-specific endonuclease scaffold SLX4 reduced the proliferation of RAD52-null ALT cells. While SLX4 was dispensable for RAD52-mediated ALT telomere synthesis in G2, combined SLX4 and RAD52 loss resulted in elevated telomere loss, unresolved telomere recombination intermediates, and mitotic infidelity. These findings establish that RAD52 and SLX4 mediate distinct postreplicative DNA repair processes that maintain ALT telomere stability and cancer cell viability.


Asunto(s)
Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinasas/metabolismo , Homeostasis del Telómero/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Técnicas de Inactivación de Genes , Inestabilidad Genómica/genética , Células HEK293 , Células HeLa , Humanos , Interfase , Proteína Recombinante y Reparadora de ADN Rad52/genética , Recombinasas/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-35663461

RESUMEN

Single-molecule localization microscopy (SMLM) describes a family of powerful imaging techniques that dramatically improve spatial resolution over standard, diffraction-limited microscopy techniques and can image biological structures at the molecular scale. In SMLM, individual fluorescent molecules are computationally localized from diffraction-limited image sequences and the localizations are used to generate a super-resolution image or a time course of super-resolution images, or to define molecular trajectories. In this Primer, we introduce the basic principles of SMLM techniques before describing the main experimental considerations when performing SMLM, including fluorescent labelling, sample preparation, hardware requirements and image acquisition in fixed and live cells. We then explain how low-resolution image sequences are computationally processed to reconstruct super-resolution images and/or extract quantitative information, and highlight a selection of biological discoveries enabled by SMLM and closely related methods. We discuss some of the main limitations and potential artefacts of SMLM, as well as ways to alleviate them. Finally, we present an outlook on advanced techniques and promising new developments in the fast-evolving field of SMLM. We hope that this Primer will be a useful reference for both newcomers and practitioners of SMLM.

3.
Methods Enzymol ; 600: 107-134, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29458755

RESUMEN

Homology-directed DNA repair (HDR) is an evolutionary conserved mechanism that is required for genome integrity and organismal fitness across species. While a myriad of different factors and mechanisms are able to execute HDR, all forms necessitate common steps of DNA damage recognition, homology search and capture, and assembly of a DNA polymerase complex to conduct templated DNA synthesis. The central question of what determines HDR mechanism utilization in mammalian cells has been limited by an inability to directly monitor the DNA damage response and products of repair as they arise from a defined genomic lesion. In this chapter, we describe several methodologies to delineate major steps of HDR during alternative lengthening of telomeres in human cells. This includes procedures to visualize interchromosomal telomere homology searches in real time and quantitatively detect HDR synthesis of nascent telomeres emanating from synchronous activation of telomere DNA double-strand breaks. We highlight the critical details of these methods and their applicability to monitoring HDR at telomeres in a broad variety of mammalian cell types.


Asunto(s)
ADN/análisis , Desoxiuridina/análisis , Microscopía Intravital/métodos , Reparación del ADN por Recombinación , Telómero/metabolismo , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Química Clic/instrumentación , Química Clic/métodos , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Replicación del ADN , Humanos , Microscopía Intravital/instrumentación , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Imagen Individual de Molécula/instrumentación , Imagen Individual de Molécula/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA